Then < p = < PCD.
∠
pbc=∠dch
∠d=∠pba
∴△pab∽△cad
So ac/pa=ad/ba.
∫CD is the bisector of∠∠∠ BCA outer corner∠∠∠ ach.
∴∠pcd=∠dch=( 1/2)∠pch
So ∠ PBC = ∠ PCD = ∠ P
∴pc=bc=a
Pa = PC-AC = A-B。
∴ad/ba=ac/pa=b/(a-b)
ad=ba*[b/(a-b)]=bc/(a-b)