∫x ln(x)dx
Let: v = x 2/2, dv = x*dx.
Let u=ln(x),
Then ∫xln(x)dx
=∫ln(x)*d(x^2/2)
=(x^2/2)ln(x)-∫(x^2/2)d(ln(x))
=(x^2/2)ln(x)- 1/2∫xdx
=(x^2/2)ln(x)-x^2/4+C
Namely:
∫xln(x)dx =(x^2/2)ln(x)-x^2/4+c①
Here c is an arbitrary integer constant.
For the definite integral of ∫xlnx dx with the upper limit of e and the lower limit of 1,
Formula ① can be used for calculation.
∫( 1→e) x lnx dx
=(x^2/2)ln(x)|( 1→e)- x^2/4|( 1→e)
= (e^2/2) - ( 1/4 - e^2/4)
= e^2/4 - 1/4