Current location - Training Enrollment Network - Mathematics courses - Is it true that from grade one to grade three, history will become easier to learn and mathematics will become more and more difficult?
Is it true that from grade one to grade three, history will become easier to learn and mathematics will become more and more difficult?
Give you some advice: 1. Take some notes when listening to the lecture in class, and write down the wonderful solutions 2. Do a set of wrong questions after class, and it is best to solve more than one question. Read the wrong set of questions every two weeks and write down your understanding of each question. Remember, interest is the best teacher. To cultivate interest in mathematics, it is easy to learn mathematics well, and this course must have a good foundation. Do more basic questions. You must ask the teacher immediately if you don't understand the question, otherwise it will be bad after a long time. So many people, after failing to learn well at first, find it more difficult to learn. You must also learn well and believe in yourself. As long as you work hard, you can make up for it. ! ! Mathematics learning; First, pay attention to the lecture in class and review it in time after class. The acceptance of new knowledge and the cultivation of mathematical ability are mainly carried out in the classroom, so we should pay attention to the learning efficiency in the classroom and seek correct learning methods. In class, you should keep up with the teacher's ideas, predict the next steps with positive thinking, and compare your own problem-solving ideas with what the teacher said. In particular, we should do a good job in learning basic knowledge and skills, and review them in time after class, leaving no doubt. First of all, we should recall the knowledge points the teacher said before doing various exercises, and correctly master the reasoning process of various formulas. If we are not clear, we should try our best to recall them instead of turning to the book immediately. In a sense, you should not create a learning way of asking questions if you don't understand. For some problems, because of their unclear thinking, it is difficult to solve them at the moment. Let yourself calm down and analyze the problems carefully and try to solve them by yourself. At every learning stage, we should sort out and summarize, and combine the points, lines and surfaces of knowledge into a knowledge network and bring it into our own knowledge system. Second, do more questions appropriately and develop good problem-solving habits. If you want to learn math well, it is inevitable to do more problems, and you should be familiar with the problem-solving ideas of various questions. At the beginning, we should start with the basic problems, take the exercises in the textbook as the standard, lay a good foundation repeatedly, and then find some extracurricular exercises to help broaden our thinking, improve our ability to analyze and solve problems, and master the general rules of solving problems. For some error-prone topics, you can prepare a set of wrong questions, write your own problem-solving ideas and correct problem-solving processes, and compare them to find out your own mistakes so as to correct them in time. We should develop good problem-solving habits at ordinary times. Let your energy be highly concentrated, make your brain excited, think quickly, enter the best state, and use it freely in the exam. Practice has proved that at the critical moment, your problem-solving habit is no different from your usual practice. If you are careless and careless when solving problems, it is often exposed in the big exam, so it is very important to develop good problem-solving habits at ordinary times. Third, adjust the mentality and treat the exam correctly. First of all, we should focus on basic knowledge, basic skills and basic methods, because most of the exams are basic topics. For those difficult and comprehensive topics, we should seriously think about them, try our best to sort them out, and then summarize them after finishing the questions. Adjust your mentality, let yourself calm down at any time, think in an orderly way, and overcome impetuous emotions. In particular, we should have confidence in ourselves and always encourage ourselves. No one can beat me except yourself. If you don't beat yourself, no one can beat my pride. Make preparations before the exam, practice routine questions, put your own ideas into practice, and avoid improving the speed of solving problems on the premise of ensuring the correct rate before the exam. For some easy basic questions, you should have a 12 grasp and get full marks; For some difficult questions, you should also try to score, learn to score hard in the exam, and make your level normal or even extraordinary. It can be seen that if you want to learn mathematics well, you must find a suitable learning method, understand the characteristics of mathematics and let yourself enter the vast world of mathematics. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *. It plays an outline role in senior high school mathematics, and it is integrated into the whole senior high school mathematics knowledge, including important mathematical thinking methods in mathematics. For example, the idea of functions and equations, the idea of combining numbers and shapes, and so on. This is also the focus of the college entrance examination. In recent years, the final questions of college entrance examination are all entitled functional investigation methods. The exercises related to function thinking methods in the college entrance examination account for more than 60% of the whole test questions. 1. Have a strong interest in learning. More than 2,000 years ago, Confucius said, "Knowing is not as good as being kind, and being kind is not as good as being happy." It means that it is better to love something than to do it, to know it, to understand it, and to enjoy it than to like it. "Good" and "happy" mean willing to learn and enjoying learning, which is interest. Interest is the best teacher. Only when you are interested can you have hobbies. If you like it, you have to practice and enjoy it. With interest, we can form the initiative and enthusiasm of learning. In mathematics learning, we turn this spontaneous perceptual pleasure into a conscious and rational "understanding" process, which will naturally become the determination to learn mathematics well and the success of mathematics learning. So how can we establish a good interest in learning mathematics? (1) preview before class, and have doubts and curiosity about what you have learned. (2) Cooperate with the teacher in class to satisfy the excitement of the senses. In class, we should focus on solving the problems in preview, regard the teacher's questions, pauses, teaching AIDS and model demonstrations as appreciating music, answer the teacher's questions in time in class, cultivate the synchronization of thinking and teachers, improve the spirit, and turn the teacher's evaluation of your questions into a driving force to spur learning. (3) Think about problems, pay attention to induction, and tap your learning potential. (4) Pay attention to the teacher's mathematical thinking when explaining in class and ask yourself why you think so. How did this method come about? (5) Let the concept return to nature. All disciplines are summarized from practical problems, and mathematical concepts are also returned to real life, such as the concept of angle, the generation of polar coordinate system and the generation of polar coordinate system are all abstracted from real life. Only by returning to reality can the understanding of concepts be practical and reliable and accurate in the application of concept judgment and reasoning. 2. Establish a good habit of learning mathematics. Habit is a stable and lasting conditioned reflex and a natural need consolidated through repeated practice. Establishing a good habit of learning mathematics will make you feel orderly and relaxed in your study. The good habits of high school mathematics should be: asking more questions, thinking hard, doing easily, summarizing again and paying attention to application. In the process of learning mathematics, students should translate the knowledge taught by teachers into their own unique language and keep it in their minds forever. In addition, we should ensure that there is a certain amount of self-study time every day, so as to broaden our knowledge and cultivate our ability to learn again. 3. Cultivate your abilities in all aspects consciously. Mathematical ability includes: logical reasoning ability, abstract thinking ability, calculation ability, spatial imagination ability and problem-solving ability. These abilities are cultivated in different mathematics learning environments. In the usual study, we should pay attention to the development of different learning places and participate in all beneficial learning practice activities, such as math second class, math competition, intelligence competition and so on. Usually pay attention to observation, such as the ability of spatial imagination is to purify thinking through examples, abstract the entities in space in the brain, and analyze and reason in the brain. The cultivation of other abilities must be developed through learning, understanding, training and application. Especially in order to cultivate these abilities, teachers will carefully design "intelligent courses" and "intelligent questions", such as multi-media teaching such as solving one question, training classification by analogy, applying models and computers, which are all good courses to cultivate mathematical abilities. In these classes, students must devote themselves to all aspects of intelligence and finally realize the all-round development of their abilities. Second, other precautions 1, pay attention to the transformation of ideological learning. People's learning process is to understand and solve unknown knowledge with mastered knowledge. In the process of mathematics learning, old knowledge is used to lead out and solve new problems, and new knowledge is used to solve new knowledge when mastered. Junior high school knowledge is the foundation. If you can answer new knowledge with old knowledge, you will have the idea of transformation. It can be seen that learning is constantly transforming, inheriting, developing and updating old knowledge. 2. Learn the mathematical thinking method of mathematics textbooks. Mathematics textbooks melt mathematics thoughts into mathematics knowledge system by means of suggestion and revelation. Therefore, it is very necessary to sum up and summarize mathematical thoughts in time. Summarizing mathematical thought can be divided into two steps: one is to reveal the content law of mathematical thought, that is, to extract the attributes or relationships of mathematical objects; The second is to clarify the relationship between mathematical ideas, methods and knowledge, and refine the framework to solve the whole problem. The implementation of these two steps can be carried out in classroom listening and extracurricular self-study. Classroom learning is the main battlefield of mathematics learning. In class, teachers explain and decompose mathematical ideas in textbooks, train mathematical skills, and enable high school students to acquire rich mathematical knowledge. Scientific research activities organized by teachers can make mathematical concepts, theorems and principles in textbooks be understood and excavated to the greatest extent. For example, in the teaching of the concept of reciprocal in junior high school, teachers often have the following understandings in classroom teaching: ① Find the reciprocal of 3 and -5 from the perspective of definition, and the number of reciprocal is _ _ _ _ _. ② Understanding from the perspective of number axis: What kind of two-point representation number is reciprocal? (about the point where the origin is symmetrical) ③ In terms of absolute value, the two numbers of absolute value _ _ _ _ are opposite. ④ Are the two numbers that add up to zero opposite? These different angles of teaching will broaden students' thinking and improve their thinking quality. I hope that students can take the classroom as the main battlefield for learning. Third, some suggestions on learning mathematics. 1, take math notes, especially the different aspects of concept understanding and mathematical laws, as well as the extra-curricular knowledge added by the teacher to prepare for the college entrance examination. 2. Establish a mathematical error correction book. Write down error-prone knowledge or reasoning in case it happens again. Strive to find wrong mistakes, analyze them, correct them and prevent them. Understanding: being able to deeply understand the right things from the opposite side; Guo Shuo can get to the root of the error, so as to prescribe the right medicine; Answer questions completely and reason strictly. 3. Memorize mathematical laws and conclusions. 4. Establish a good relationship with classmates, strive to be a "little teacher" and form a "mutual aid group" for math learning. 5. Try to do extra-curricular math problems and increase self-study. 6. Repeatedly consolidate and eliminate forgetting before school. 7. Learn to summarize and classify. It can be divided into the following categories: ① from mathematical thought; ② From the method of solving problems; ③ From knowledge application;

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * There are many reasons for this. But it is mainly caused by students' ignorance of the characteristics of high school mathematics teaching content and their own learning methods. According to the characteristics of high school mathematics teaching content, this paper talks about learning methods of high school mathematics for students' reference. First, the characteristics of high school mathematics and junior high school mathematics 1 change. Mathematical language has a sudden change in abstraction, which is significantly different from junior high school. Junior high school mathematics is mainly expressed in vivid and popular language. Mathematics in senior one involves very abstract set language, logical operation language, function language, image language and so on. 2. Transition from thinking method to rational level Another reason why senior one students have difficulty in mathematics learning is that the thinking method of senior high school mathematics is very different from that of junior high school. In junior high school, many teachers have established a unified thinking mode for students to solve various problems, such as how many steps to solve the fractional equation, what to look at first and then what to look at in factorization, and so on. Therefore, junior high school students are used to this mechanical and easy-to-operate stereotype, while senior high school mathematics has undergone great changes in the form of thinking, and the abstraction of mathematical language puts forward high requirements for thinking ability. This sudden change in ability requirements has made many freshmen feel uncomfortable, leading to a decline in their grades. 3. The total amount of knowledge content has increased dramatically. Another obvious difference between high school mathematics and junior high school mathematics is that the "quantity" of knowledge content has increased greatly. Compared with junior high school, the amount of knowledge and information received per unit time has increased a lot, and the class hours for assisting exercises and digestion have decreased accordingly. 4. The independence of knowledge and the more rigorous system of junior high school knowledge have brought great convenience to our study. Because it is easy to remember and suitable for the extraction and use of knowledge. However, high school mathematics is different. It consists of several relatively independent pieces of knowledge (such as a set, propositions, inequalities, properties of functions, exponential and logarithmic functions, exponential and logarithmic equations, trigonometric ratios, trigonometric functions, series, etc.). ). Often, as soon as a knowledge point is learned, new knowledge appears immediately. Therefore, paying attention to their internal small systems and their connections has become the focus of learning. Second, how to learn high school mathematics 1 well and form a good habit of learning mathematics. Establishing a good habit of learning mathematics will make you feel orderly and relaxed in your study. The good habits of high school mathematics should be: asking more questions, thinking hard, doing easily, summarizing again and paying attention to application. In the process of learning mathematics, students should translate the knowledge taught by teachers into their own unique language and keep it in their minds forever. Good habits of learning mathematics include self-study before class, paying attention to class, reviewing in time, working independently, solving problems, systematically summarizing and studying after class. 2. To understand and master the commonly used mathematical thinking methods in time to learn high school mathematics requires us to master it from the height of mathematical thinking methods. Mathematics thoughts that should be mastered in middle school mathematics learning include: set and correspondence thoughts, classified discussion thoughts, combination of numbers and shapes, movement thoughts, transformation thoughts and transformation thoughts. With mathematical ideas, we should master specific methods, such as method of substitution, undetermined coefficient method, mathematical induction, analysis, synthesis and induction. In terms of specific methods, commonly used are: observation and experiment, association and analogy, comparison and classification, analysis and synthesis, induction and deduction, general and special, finite and infinite, abstraction and generalization. When solving mathematical problems, we should also pay attention to solving the problem of thinking strategy, and often think about what angle to choose and what principles to follow. The commonly used mathematical thinking strategies in senior high school mathematics include: controlling complexity with simplicity, combining numbers with shapes, advancing forward and backward with each other, turning life into familiarity, turning difficulties into difficulties, turning retreat into progress, turning static into dynamic, and separating and combining. 3. Gradually form a "self-centered" learning model. Mathematics is not taught by teachers, but obtained through positive thinking activities under the guidance of teachers. To learn mathematics, we must actively participate in the learning process, develop a scientific attitude of seeking truth from facts, and have the innovative spirit of independent thinking and bold exploration; Correctly treat difficulties and setbacks in learning, persevere in failure, be neither arrogant nor impetuous in victory, and develop good psychological qualities of initiative, perseverance and resistance to setbacks; In the process of learning, we should follow the cognitive law, be good at using our brains, actively find problems, pay attention to the internal relationship between old and new knowledge, not be satisfied with the ready-made ideas and conclusions, and often think about the problem from many aspects and angles and explore the essence of the problem. When learning mathematics, we must pay attention to "living". You can't just read books without doing problems, and you can't just bury your head in doing problems without summing up the accumulation. We should be able to learn from textbooks and find the best learning method according to our own characteristics. 4. According to your own learning situation, especially the different aspects of concept understanding and mathematical laws, as well as the extracurricular knowledge that teachers have expanded in class, take some concrete measures to take math notes. Write down the most valuable thinking methods or examples in this chapter, as well as your unsolved problems, so as to make up for them in the future. Establish a mathematical error correction book. Write down error-prone knowledge or reasoning in case it happens again. Strive to find wrong mistakes, analyze them, correct them and prevent them. Understanding: being able to deeply understand the right things from the opposite side; Guo Shuo can get to the root of the error, so as to prescribe the right medicine; Answer questions completely and reason strictly. Recite some mathematical rules and small conclusions, so that your usual operation skills can reach the level of automation or semi-automation proficiency. Often organize the knowledge structure into plate structure and implement "full container", such as tabulation, so that the knowledge structure can be seen at a glance; Often classify exercises, from a case to a class, from a class to multiple classes, from multiple classes to unity; Several kinds of problems boil down to the same knowledge method. Read math extracurricular books and newspapers, participate in math extracurricular activities and lectures, do more extracurricular math problems, increase self-study and expand knowledge. Review in time, strengthen the understanding and memory of the basic concept knowledge system, carry out appropriate repeated consolidation, and eliminate learning without forgetting. Learn to summarize and classify from multiple angles and levels. Such as: ① classification from mathematical thoughts, ② classification from problem-solving methods, ③ classification from knowledge application, etc. , so that the knowledge learned is systematic, organized, thematic and networked. Often do some "reflection" after doing the problem, think about the basic knowledge used in this problem, what is the mathematical thinking method, why do you think so, whether there are other ideas and solutions, and whether the analytical methods and solutions of this problem have been used in solving other problems. Whether it is homework or exams, we should put accuracy first and general methods first, rather than blindly pursuing speed or skills. This is an important problem to learn mathematics well. To learn mathematics well, students in Grade Three should first study mathematics with strong interest, insert the wings of positive thinking, actively participate in the whole process of education, give full play to their subjective initiative, and study mathematics happily and effectively. Secondly, we should master the correct learning methods. In order to train their ability to learn mathematics and change their learning methods, we must change the learning methods that are simply accepted, learn to learn to learn by accepting learning and inquiry learning, cooperative learning and experiential learning, and gradually learn the learning methods of "asking questions, exploring experiments, discussing, forming new knowledge and applying reflection" under the guidance of teachers. In this way, through the change of learning methods from single to diverse, our autonomy, exploration and cooperation in learning activities have been strengthened and we have become the masters of learning. In the new semester, we should do a good job in every class, including the concept class of knowledge generation and formation, the exercise class of problem-solving thinking exploration and law summary, and the review class of refining and integrating mathematical thinking methods with practice. We should take these classes well, learn mathematics knowledge and master the methods of learning mathematics. Concept class should attach importance to the teaching process, actively experience the process of knowledge generation and development, find out the ins and outs of knowledge, understand the process of knowledge generation, understand the derivation process of formulas, theorems and laws, change the method of rote learning, and let us experience the fun of learning knowledge from the process of knowledge formation and development; In the process of solving the problem, I felt the joy of success. In the exercise class, we should master the trick of "I would rather watch it once, not do it once, not speak it once, not argue it once". In addition to listening to the teacher and watching the teacher do it, you should also do more exercises yourself, and you should actively and boldly tell everyone about your experience. When encountering problems, you should argue with your classmates and teachers, stick to the truth and correct your mistakes. Pay attention to the problem-solving thinking process displayed by the teacher in class, think more, explore more, try more, find creative proofs and solutions, and learn the problem-solving methods of "making a mountain out of a molehill", that is, take objective questions such as multiple-choice questions and fill-in-the-blank questions seriously, and never be careless, just like treating big questions, so as to write wonderfully; For a topic as big as a comprehensive question, we might as well decompose the "big" into "small" and take "retreat" as "advance", that is, decompose or retreat a relatively complex question into the simplest and most primitive one, think through these small questions and simple questions, find out the law, and then make a leap and further sublimation, thus forming a big question, that is, settle for second best. If we have this ability to decompose and synthesize, coupled with solid basic skills, what problems can't beat us? recite