Sum and difference formula of two angles
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/( 1-tanA tanB)
tan(A-B)=(tanA-tanB)/( 1+tanA tanB)
Secondly, with the above formula, the following double-angle formula can be derived.
tan2A=2tanA/[ 1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 - 1= 1-2(sina)^2
sin2A=2sinA*cosA
Three, half angle just remember this:
Tan(A/2)=( 1-cosA)/ Sina = Sina /( 1+cosA)
Fourthly, the formula of power reduction can be derived from the double angle cosine.
(sinA)^2=( 1-cos2A)/2
(cosA)^2=( 1+cos2A)/2
Five, using the above formula to reduce the power, the following commonly used simplified formulas can be derived.
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2