Then (1-x)(x+3)= 1.
-x^2-2x+3= 1
x^2+2x-2=0
Domain,1-x >; 0,x+3 & gt; 0
-3 & lt; x & lt 1
So x=- 1+√2 or x=- 1-√2.
Loga(X) is a decreasing function.
The minimum value of f(x) is -4.
loga[( 1-x)(x+3)]& gt; =-4=loga(a^-4)
So (1-x) (x+3) < = a-4.
( 1-x)(x+3)=-x^2-2x+3=-(x+ 1)^2+4
So the maximum value of true number =4.
So a (-4) = 4.
a=4^(- 1/4)=√2/2