The area of triangle OA(n- 1)B(n- 1) is S(n- 1).
s(n- 1)/sn =(oa(n- 1)/oan)^2=(a(n- 1)/an)^2....( 1)
s 1/(s 1+s)=(oa 1/oa2)^2= 1/4
4s 1 = S 1+S S = 3s 1
S(n- 1)= S 1+(n-2)S = S 1+(n-2)* 3s 1 =(3n-5)S 1
sn = S 1+(n- 1)S = S 1+(n- 1)* 3s 1 =(3n-2)S 1
So s (n-1)/sn = (3n-5)/(3n-2) = (a (n-1)/an) 2.
Get a(n- 1)/an = radical sign ((3n-5)/(3n-2)).
An/a(n- 1) = radical sign ((3n-2)/(3n-5)) ...
Can be obtained from formula (2)