Two important properties of absolute value inequality;
1、ab|=|a||b|
|a/b|=|a|/|b|(b≠0)[ 1]?
2. | a | & lt|b| Reversible push |b| >|a|
||||| A |-| B |||||≤| A+B |≤| A |+B |, the left equal sign holds if and only if ab≤0, and the right equal sign holds if ab≥0.
? Deduction process of inequality of absolute value of extended data | | | a |-| b | |≤| a b |≤| a |+| b |;;
We know that |x|={x, (x >;; 0); x,(x = 0); -x,(x & lt0);
Therefore, there are:
-|a|≤a≤|a|......①
-|b|≤b≤|b|......②
-|b|≤-b≤|b|......③
From ①+②:
-(|a|+|b|)≤a+b≤|a|+|b|
That is | a+b |≤| a |+b |...④
From ①+③:
-(|a|+|b|)≤a-b≤|a|+|b|
That is | a-b |≤| a |+| b |...⑤
Another one:
|a|=|(a+b)-b|=|(a-b)+b|
|b|=|(b+a)-a|=|(b-a)+a|
Learn from ④:
| a | = |(a+b)-b |≤| a+b |+|-b | = & gt; |a|-|b|≤|a+b|.......⑥
| b | = |(b+a)-a |≤| b+a |+|-a | = & gt; |a|-|b|≥-|a+b|.......⑦
| a | = |(a-b)+b |≤| a-b |+| b | = & gt; |a|-|b|≤|a-b|.......⑧
| b | = |(b-a)+a |≤| b-a |+| a | = & gt; |a|-|b|≥-|a-b|.......⑨
From ⑥ and ⑥:
||a|-|b||≤|a+b|......⑩
Starting from ⑧ and ⑨:
||a|-|b||≤|a-b|......?
Comprehensive ④ ⑤ ⑩? An important inequality about absolute value is obtained: | a |-| b |≤| a b |≤| a |+b |.
References:
Baidu Encyclopedia-Absolutely unequal