1)
Because: AB=AC=2, ∠ A = 90.
So: ∠ B = ∠ C = 45 ......................... (1)
Connect AP, and point P is the midpoint of hypotenuse BC of isosceles right triangle.
So: AP=BP=CP=BC/2, AP⊥BC.
∠ economically active population =∠FAP=45
According to the triangle exterior angle theorem:
∠EAP+∠EPA=∠BEP=45 +∠EPA
∠CPF =∠APC-∠APF = 90-(∠EPF-∠EPA)= 90-45+∠EPA = 45+∠EPA
So: ∠ BEP = ∠ CPF...............(2)
Therefore, from (1) and (2), we can know △BPE∽△CFP.
2)
BE=x,AB=AC=2,BC=2√2,AP=BP=CP=√2
According to the cosine theorem are:
PE^2=BE^2+BP^2-2BE*BPcos45
pe^2=x^2+2-2√2x*(√2/2)=x^2-2x+2
PE=√(x^2-2x+2)
According to the triangle similarity of 1):
BE/CP=PE/FP
x/√2=√(x^2-2x+2)/PF
So: pf = √ (2x 2-4x+4)/x
So the area of the triangle PEF:
S=y=PE*PF*(sin45 )/2
=√(x^2-2x+2)*[√2*√(x^2-2x+2)/x]*(√2/4)
=(x^2-2x+2)/(2x)
So:
y=x/2+ 1/x- 1,0 & lt; x & lt2
3)
∠EFP=60,∠EPF=45,∠FEP=75
According to sine theorem:
PE/sin60 =PF/sin75 =2R
√(x^2-2x+2)/=√2*√(x^2-2x+2 sin 60)/(xsin 75)
So:
√2sin60 =xsin75
x =(√6/2)/(sin 45 cos 30+cos 45 sin 30)
x=(√6/2) /(√6/4+√2/4)
x=2√3/(√3+ 1)
x=√3*(√3- 1)
X=3-√3 belongs to (0,2)
So: x=3-√3.