∴∠ECF=90,
∠∠CEF =∠CBD,∠BCD=90,
∴△BCD∽△ECF,
∴CECB=CFCD,
(2) Let the intersection of EF and CD be o,
∫△BCD∽△ECF,
∴∠BDC=∠EFC,
∠∠DOE =∠COF,
∴△DOE∽△COF,
∴OEOC=ODOF,
∴OEOD=OCOF,
∠∠DOF =∠EOC,
∴△ECO∽△DOF,
∴∠CFO=∠CDF,
∴∠EDC+∠CDF=∠BDC+∠DBC=90,
∴∠BDF=90,
∴BD⊥DF.