Mathematics teaching plan for large class: understand the design intention of cube 1;
Geometric mathematics is very important in large classes. Cylinders and cuboids are common solid geometry, which children often come into contact with in their daily life. Children's understanding of cylinders and cuboids is very vague, and they can only be described as circles, lengths and squares, so it is difficult to connect them with life. Therefore, we try to carry out this teaching activity in the form of games on the basis of children's understanding of several plane geometric figures. By letting children know the characteristics of cubes in the process of independent exploration and comparing the similarities and differences between cubes and squares, children's learning ability in many aspects can be developed.
Activity objectives:
1. Know the cube and tell its name and characteristics.
2. Observe carefully and be willing to explore.
Activity preparation:
1. Each child collects a cube box in advance.
2. Blackboard, a record sheet; Straws, scissors, pens, A4 paper; Some magnetic bars, three big baskets and three tables.
3. A rectangular box.
Activity flow:
First, consolidate the characteristics of the square.
Teacher: Show me a square piece of paper. Question: What shape is this paper?
Children observe and talk about the shape of paper. Such as: square paper.
3. According to the children's answers, the teacher asked: How do you know it is square paper?
Children talk about it. How can I prove that it is a square? Such as: look, fold, measure, etc.
5. Summary: A figure with four equal sides is a square.
Second, explore the characteristics of the square.
1. The teacher showed the cube box and asked: Are they the same? Where is it the same? What is the difference?
2.a, young: the same, all square.
Teacher: How do you know it is square? Is there any way to prove that this side of the box is square? For example, stick a square piece of paper on the box and compare it with one of the faces.
Teacher: What about the other side? Who can verify it?
No, this box seems to have several squares. One is a three-dimensional figure, and the other is a plane figure.
Just now, a child said how many squares are there on the box? How many squares are there? Let's count them together.
5. Collective communication.
How do you count it?
B. The teacher prepares several cubic figures in advance and sticks them on the blackboard, and summarizes them according to the children's answering methods, and shows them with charts. E.g. by color, marking, direction, etc.
6. Teacher's summary: It turns out that each box is composed of six squares.
7. Are the six squares on the box the same size?
8. Show verification tools. Here are some tools. Please use these tools to verify your guess. What tool do you think it is?
9. Teacher's explanation requirements: each child chooses a seat with/kloc-0 cubes, and each of the three tables has a basket with five pens, five straws, five A4 papers, five scissors and several magnetic rods. Children can use these tools to verify whether the squares on the box are the same size. Comparing which child has the ability can be verified in various ways.
10. Collective communication, talk about verification methods.
A.do you have a result? Are the six squares on the box the same size?
B. the teacher guides the children to talk about their respective results. For example, it is verified by overlapping method, straw, magnetic bar tiling and other methods.
1 1. Show the record sheet and summarize the characteristics of the box.
12. Summary: The original three-dimensional figure composed of six squares with the same size is a cube. The boxes in your hand are all cubes.
Third, the extension of activities.
1. I have another box here. Is it a cube?
2. Let's go back to the teacher and test it with the new skills we learned today!
During the whole activity, the thinking is clear, the teaching attitude is natural, and the class can be taught according to the flow of the teaching plan. However, the atmosphere of the whole activity is a bit heavy, which does not reflect the children's interest in the activity.
Teaching reflection:
In this class, I use the methods of comparison, observation and contrast to let children intuitively see the difference and essential connection between form and form, so as to understand the difference between plane and three-dimensional, perceive their own characteristics, thus solving the difficulties and difficulties of activities and making them carry out effectively. During the activity, the children developed a strong interest. After operation and comparison, they can boldly express the difference between form and form, knowing that form is formed on the basis of form. In the expansion link, children can expand their thinking and actively express that those objects in life are cubes, further internalizing their own experience and knowledge.
Mathematics Teaching Plan for Large Classes: Understanding Cube 2 teaching material analysis
(Key points and difficulties)
The core values of this activity are: different concepts of form and body. Cubes can be seen everywhere in children's lives, such as dice, medicine boxes, milk boxes and so on. However, children's understanding of cubes is vague. For large class children, they have already possessed the preliminary hands-on operation and logical reasoning ability. Therefore, on the basis of children's understanding of squares, this mathematics activity will make mathematics education gamified and lively through children's free exploration, thus stimulating children's interest in three-dimensional modeling. The focus of the activity is to understand the difference between body and cube through observation and comparison. The difficulty is to perceive the basic characteristics of the cube in independent exploration.
Basic analysis of children
(Ability and experience basis)
Children have: in the middle class, I have known the plane graphics such as squares and rectangles, but I still confuse the plane graphics with the three-dimensional graphics in my life. Children in large classes have a preliminary abstract logical thinking.
Children's nothingness: the concepts of form and body are still unknown.
Ascension point: Starting from the understanding of cubes, gradually build the experience system of three-dimensional graphics, which conforms to their cognitive development law.
moving target
1. Understand the difference between shape and body through observation and comparison, and perceive the basic characteristics of cube through preliminary exploration.
2, interested in three-dimensional graphics, developing spatial perception ability in exploration.
Activities to be prepared
(Materials, environment, knowledge preparation)
1, knowledge preparation: children know square, rectangle and other plane graphics.
2. Material preparation: 7 people with magnetic disks.
Activity process
First, initially perceive the difference between three-dimensional graphics and plane graphics.
1. Show me the floppy disk: What's this?
2. Can a square magnetic disk be made into a cube?
We play chess with dice (boxes).
A square piece of paper. A piece of paper can't make dice.
Design intention: use magnetic disk to import and awaken the experience of existing three-dimensional graphics and plane graphics.
Second, combine cubes independently, and observe and compare the characteristics of squares and cubes.
1. Compare the similarities and differences between cubes and squares.
Material: 7 square magnetic disks in hand.
Requirements: Is each side of the contrast disk as big as a cube?
Count several magnetic disks, form a cube, and record your findings.
Children will touch the magnetic disk with their hands and overlap each side of the magnetic disk with square pieces of paper to see if the size is the same.
* * * Let's count how many square faces there are on the magnetic disk.
Design intention: Distribute three-dimensional graphics and plane graphics to the group, so as to facilitate children's independent exploration, and at the same time, understand the different characteristics of shapes and shapes through a peer learning experience.
2. Teachers and children * * * cooperate to verify.
Summary: A three-dimensional figure surrounded by six squares of the same size like this is called a cube.
Observe the cubes with different colors on each side in the teacher's hand and count how many squares there are.
Design intention: Using the combination and decomposition of plane graphics, let children intuitively perceive the basic characteristics of the cube.
Third, the cube in life.
1. Communication: What other cubic things have you seen in your life?
2, picture sharing: find a cube.
The building blocks in my house, the Rubik's cube I played. ...
Design intention: observe some cubes in life and gain more experience in three-dimensional graphics.
Mathematics teaching plan for large class: understanding the design background of cube 3 activity
The Outline points out: "We can gain perceptual experience about the shape and quantity of objects from life and games, and try to solve some simple problems in daily life and games by using the existing knowledge and experience". Therefore, I think whether it is the content or the way of education, as long as it can stimulate children's interest in mathematics, is closely related to life and is beneficial to children's development, it is worth trying. Cubes can be seen everywhere in children's lives, such as medicine boxes and milk boxes. However, children's understanding of cubes is vague. For large class children, they have already possessed the preliminary hands-on operation and logical reasoning ability. Therefore, on the basis of children's understanding of the square, I designed this math activity to make math education gamified and lively through children's free exploration, thus stimulating children's interest in three-dimensional modeling.
moving target
1, review and consolidate the square, and feel the difference between the plane shape and the three-dimensional shape through observation and comparison.
2, preliminary perception of the cube, know its name and the most significant features.
3. Cultivate the ability to use your hands and brains and experience the happiness of helping others.
4. Guide children to actively interact with materials and experience the fun of mathematics activities.
5, stimulate children's interest in learning, experience the happiness of mathematics activities, and feel the fun of collective activities.
Teaching emphases and difficulties
1, focus on the cube and know its salient features.
2. Classify the difficulties according to the obvious characteristics of the body, and improve the ability of analysis, comparison and generalization.
Activities to be prepared
Packing box, square card, cube development diagram, scissors, colored pens, glue sticks (one for each person), and various decorative materials.
Activity process
I. Import part:
The story of Pleasant Goat's Gift leads to the topic, and the teacher tells stories to arouse children's interest. Let's look at Pleasant Goat's gift. (Showing the box) What's inside? Explore the' secret' in the box together?
Second, the basic part:
1, free exploration: compare your own packaging box with others?
2. Explore the items in the secret box (square cardboard) and review and consolidate the characteristics of the square.
3. What are the similarities and differences between squares and boxes? Let the children discuss freely and the teacher participate in the discussion. Teachers and students agree that the square is flat, the box is angular, each side is square, the square has one side, and the box has six sides.
4. Small experiment: Let the children think freely and see if the six sides of the box are the same size.
5. The teacher concluded by telling the children that the box in their hands is a cube and consolidating the characteristics of the cube.
6. Make a digital Rubik's Cube: Teachers and students * * * expand the diagram with observation cubes to see how many squares there are. Discuss the production method, and the children's operation teacher will observe and guide in time.
7. Game: Throw a digital Rubik's Cube (when the teacher stops throwing the Rubik's Cube, depending on the amount of magic, the children clap their hands or stamp their feet several times).
8. Show all kinds of packing boxes and let the children tell which are cubes, which are not, and why?
9. Let the children talk about which objects in life are cubes.
Third, the conclusion part.
1, decorate a digital Rubik's cube to remind children to pay attention to safety.
2. Show your work. Give the Rubik's Cube to a good friend and say a word of blessing.
Teaching reflection
In this class, I use the methods of comparison, observation and contrast to let children intuitively see the difference and essential connection between form and form, so as to understand the difference between plane and three-dimensional, perceive their own characteristics, thus solving the difficulties and difficulties of activities and making them carry out effectively. During the activity, the children developed a strong interest. After operation and comparison, they can boldly express the difference between form and form, knowing that form is formed on the basis of form. In the expansion link, children can expand their thinking and actively express that those objects in life are cubes, further internalizing their own experience and knowledge.
Mathematics teaching plan for large class: understanding the activity goal of cube 4;
1. Know the cube and know some basic features of the cube.
2. In the operation activities, try to learn to complete the task of making cubes independently.
3. Experience the joy of participating in math activities.
Activity preparation:
Teaching AIDS: Cubic square learning tools: children's books, all kinds of cuboid and cube objects.
Activity flow:
First of all, a preliminary understanding of cubes
Teacher: Teacher, here is a big Rubik's cube. Please look at its shape.
Yang: Square (cube) The teacher compares a square with a cube.
(1) Teacher: Please look at the shape of the cube. (Square), are all faces square?
(2) Let's compare it again. Are all faces the same size?
(3) Count, how many sides does this Rubik's Cube have? (6)
Teacher: Shapes like this are called cubes.
Summary: A cube has six faces, and each face is a square with the same size.
Second, consolidate learning.
Teacher: The teacher has prepared a lot of things for you. Please find out which things are cubes (validation).
Third, the operation practice
Make cubes.
Fourth, the dice game.
Mathematics teaching plan for large class: understanding the activity goal of cube 5;
1. Know cuboids and cubes and distinguish them.
2. Feel the difference between lines and shapes and develop a sense of space.
3. Cultivate the ability of hands-on, brains and cooperation.
4. Cultivate children's interest in calculation and the accuracy and agility of thinking through various sensory training.
5. Understand the application of numbers in daily life, and preliminarily understand the relationship between numbers and people's lives.
Activity preparation:
1. Some rectangular boxes and some rectangles with flowers; 2. Many cubes and cuboids; 3. Slides.
Activity flow:
First, know the cuboid
1. Observe the operation data on the desktop. Children, look at what's on the table. Today the teacher will let the children play a game of "finding friends" with these things.
2. The teacher explained the operation and asked the teacher of this paper box to dress them in beautiful clothes. Then, ask the children to "take off" the clothes in the paper box, count how many clothes it has always had, and then help the clothes find clothes the same size as themselves as friends, and then ask the children to paint flowers on their good friends and put them back in the paper box after painting.
3. Children's operation and teacher's guidance.
4. Analysis of children's operation results
(1) Show the cuboids of each group of children on it, and the teacher and the children will observe them together.
(2) Just now, all our children "took off" the clothes in the paper box. How many clothes do you think it has? (Six dollars) Let's see if there are six dollars. The teacher took off his clothes one by one and showed them on the blackboard. How many sides do you think this carton has?
(3) Look at these six faces. Who is a good friend? So they are the same size? The teacher put six faces together in pairs. )
(4) Now I put them all back, here is here, and here is. ...
(5) The upper and lower sides are the same size, the left and right sides are the same size, and the front and rear sides are the same size.
5. Teacher's summary: Boxes like tissue boxes and milk boxes have six sides, each of which is rectangular. An object with two opposite faces of the same size is called a cuboid (display font: cuboid).
Second, know the cube
1. (The teacher shows the cube) Do you think this is a cuboid, children? Yes, please raise your hand.
2. Is this really the case? Let's have a look. Let's count how many sides it has. (6) Every face of it is a square, and the six squares are all the same size. Like this, there are six faces, each face is a square, and the six squares are all the same size. Such a shape is called a cube (displaying cube fonts), and a cube is also a cuboid.
Third, distinguish between cubes and cuboids.
1. Children, we just got to know cuboids and cubes. The teacher prepared many things for the children in the back. Please go to the back and choose a cuboid or cube to see which child can pick it up quickly and well and return to the seat.
2. Ask a child what he chose, and what is it?
Please put the cuboid and cube in your hand into two baskets respectively.
Fourth, look for cuboids and cubes in life.
1. What other objects in your life are cuboids or cubes?
2. Watch the slide show.
Verb (abbreviation of verb) expansion activity (the teacher shows a cuboid with two square faces) The teacher also has a cuboid here. This cuboid has two square faces. Please ask the children to get dressed for it when you go back, and you will also find a secret.
Teaching reflection:
There are many knowledge points in this activity, all of which are conceptual. When consolidating learning, children are prone to boredom. To this end, teachers have changed the traditional way, and designed objects familiar to children as carriers according to the teaching objectives, so that children can develop unconsciously while watching, touching, moving and playing. By learning cuboids and cubes, children can better observe and understand the world around them from a mathematical point of view and form a preliminary concept of space; So as to be curious about the things around them and cultivate children's habit of exploration.
Mathematics teaching plan for large class: understanding the activity goal of cube 6;
1. Knowing the cube in the activity can distinguish the cube from the square, and initially perceive the basic characteristics of the cube.
2. Be able to find cubic objects in life and perceive three-dimensional graphics.
3. Cultivate children's observation ability and spatial perception ability.
4. Cultivate children's interest in calculation and the accuracy and agility of thinking through various sensory training.
5. Let children learn simple math problems.
Activity preparation:
1. Teaching aid preparation: dice, cube drawing paper, courseware.
2. Preparation of learning tools: making cube pattern paper, colored pens and glue sticks.
Activity flow:
First, prepare for activities.
1. Greetings from teachers and children. Today, I'm going to take my children to the mysterious magic park, and then we're going on a mysterious magic journey. Please join me. " "Log cabin": The building blocks are wide and long. I build a new house with building blocks. Children, please go in and praise the beautiful house!
Second, group activities.
(1) observing graphics Children look at the courseware Teacher: "What graphics are there on the graphics paper? How many/much? Are they the same size? " Teacher: "There are six squares of the same size on this graphic card. Let's do a magic trick and see what we can become? "
(2) Teachers demonstrate the operation activities and fold the drawings into cubes.
Teacher: "Today this new figure is called a cube." Children, let's have a try.
(3) To know the shape, please ask children to observe the cube. Teacher: "How many faces does a cube consist of?" Teacher: "What is the figure on each face?" ? Is each figure the same size? Abstract: A three-dimensional figure surrounded by six identical squares is called a cube.
(4) Teacher-child interaction teacher: Let the children talk about the cube in life.
Third, the game activities:
1. Game name "Dice" game
The rules of the game require a child to roll the dice, and the child answers the questions according to the number of the dice. The children who answered correctly went on stage to roll the dice. (Mark questions on the dice)
Number 1: How many faces does a cube have?
Second: Are the six faces of the cube the same size?
Number 3: What cubic things are there in life?
Number 4: What are the square things in life?
Number 5: What are the six faces of a cube?
Sixth: roll the dice again.
3. Summary of activities
Teaching reflection:
In this class, I use the methods of comparison, observation and contrast to let children intuitively see the difference and essential connection between form and form, so as to understand the difference between plane and three-dimensional, perceive their own characteristics, thus solving the difficulties and difficulties of activities and making them carry out effectively. During the activity, the children developed a strong interest. After operation and comparison, they can boldly express the difference between form and form, knowing that form is formed on the basis of form. In the expansion link, children can expand their thinking and actively express that those objects in life are cubes, further internalizing their own experience and knowledge.
Mathematics teaching plan for large classes: understanding cubes 7. Mathematics for large classes: understanding cuboids and cubes.
Activity 1: Learn about cubes and cubes.
Activity purpose:
1, you can name cuboids and cubes and know their main features.
2. Further consolidate the understanding of squares and rectangles, and understand the difference between planes and solids.
Activity preparation:
Cuboid, cube building blocks, paper boxes
Square and rectangular cardboard, the area of one side of square and cube is equal, and the area of one side of rectangle and cuboid is equal.
Activity flow:
1, review and consolidate the understanding of squares and rectangles.
Teachers show squares and rectangles respectively, and let children tell their similarities and differences.
2. Show the cuboids and cubes and tell the children the names of cuboids and cubes.
3. Give the children (each group) a cuboid, a cube, a square and a rectangle, and let them play with it at will, touch it, compare it and see what is different and the same.
4. Teachers and children compare and summarize: Counting in sequence, a cuboid has six faces, each face is generally rectangular, and a cube also has six faces, each face is square (compared by overlapping each face of a square and a cube), and its six faces are the same size.
5. Let the children tell which objects they have seen in their lives are cuboids. Which objects are cubes?
Mathematics teaching plan for large class: understanding the activity goal of cube 8
1. Understand the basic features of cubes and experience the fun of mathematical activities.
2. Learn to observe, compare and cooperate, and develop the flexibility of thinking.
Activities to be prepared
Wool, paper, watercolor pens, cubes, cubes and foam boards of different sizes.
Activity process
1. Import link
Introduce the object of understanding-cube in the form of gifts, and get to know the cube initially.
2. Basic part
(1) Play: Children explore for the first time.
Children observe the characteristics of cubes and put them together freely.
The teacher concluded: A cube is made up of six squares of the same size. A cube has six faces. Ask the child to verify.
(2) Take a ride: the child plays the second one.
On the basis of the first splicing, a second splicing is needed, and six people need to work together to build a cube.
Conclusion: Children should find six square foam boards of the same size to make a cube. A square or six squares of different sizes can't make a cube.
(3) Measurement: find the cube.
Use the tools provided to find the cube.
Summary: highlight the individual and explain the incorrect.
3.End: look for it
The children are great. There are many small squares in our kindergarten. Let's go out and find them.