∴f(-x)=e-x+ex=f(x),
∴f(x) is an even function on r;
(2) Solution: If the inequality about x mf(x)≤e-x+m- 1 holds (0, +∞),
That is m (ex+e-x-1) ≤ e-x-1,
∫x > 0,
∴ex+e-x- 1>0,
That is, m≤
e? x? 1
ex+e? x? 1
It remains (0, +∞),
Let t=ex, (t > 1), then m≤
1? t
t2? t+ 1
It remains unchanged (1, +∞).
∵
1? t
t2? t+ 1
=-
t? 1
(t? 1)2+(t? 1)+ 1
=-
1
t? 1+
1
t? 1
+ 1
≥?
1
three
The equal sign holds if and only if t=2, that is, x=ln2.
∴m≤?
1
three
(3) let g(x)=ex+e-x-a(-x3+3x),
Then g'(x)=ex-e-x+3a(x2- 1),
When x > 1 and g' (x) > 0, that is, the function g(x) monotonically increases on [1, +∞).
Therefore, the minimum value of g(x) at this time is g( 1)=e+
1
e
-2a,
F (x0) < a (-x03+3x0) holds because x0∈[ 1, +∞) exists.
Gu e+
1
e
-2a
1
2
(e+
1
e
),
Let h (x) = x-(e-1) lnx-1,
Then h'(x)= 1-
e? 1
x
By h ′ (x) =1-
e? 1
x
=0,x=e- 1,
(1) When 0 < x < e- 1, h' (x) < 0, and the function is monotonically decreasing,
(2) when x > e- 1, h' (x) > 0, and the function is monotonically increasing.
The minimum value of ∴h(x) at (0, +∞) is h(e- 1),
Note that h( 1)=h(e)=0,
When x ∴ (1,e- 1)? (0,e- 1),h (e- 1) ≤ h (x) < h ( 1) = 0,
When x∈(e- 1, e)? (e- 1,+∞),h (x) < h (e) = 0,
∴ h (x) < 0 holds for any x∈( 1, e).
①a∈(
1
2
(e+
1
e
),e)? (1, e), h (a) < 0, that is, A- 1 < (e- 1) LNA, so AE- 1 > EA- 1,
② when a=e, ae- 1=ea- 1,
③ When a∈(e, +∞), e)? (e- 1, +∞), when A > E- 1, H (A) > H (E) = 0, that is, A- 1 > (E- 1) LNA, thus AE-65438+.