∵ABCD is a square.
∴ab=bc,∠abc=∠dcb=∠ebc=∠bcg=∠fgc=90
∴BCGF is a rectangle.
∴BC=FG,BF=CG,∠BFG=90
∴AB=FG
∵EF⊥AP, then ∠ BAP+∠ AFP = 90.
∠AFP+∠GFE=∠BFG=90
∴∠BAP=∠GFE
∴RT△BAP≌RT△GFE(ASA)
∴BP=EG=CE+CG=CE+BF
2、CE=BF+BP
3、∫BF(AB)∑CE(CD)
∴bp/cp=pf/pe= 1/3(BP∶CP = 1∶3)
Then pf =1/3pe =1/3× 3 √ 5 = √ 5.
∴RT△BFP: BP? =BF? -BF? =(√5)? - 1? =4
BP=2, then CP=3BP=6,
BG=BP=2,FG=BG-BF=2- 1= 1
De: BC=AB=CP-BP=6-2=4。
EF=PE-PF=3√5-√5=2√5
∴RT△PCE: CE=√(PE? -CP? )=√[(3√5)? -6? ]=3
RT△ABP: AP=√(AB? +BP? )=√(4? +2? )=2√5
∫FG∨CE
∴△FOG∽△COE
∴OF/OE=FG/CE= 1/3
OF/(EF-OF)= 1/3
3OF=(2√5-OF)
OF=√5/2
∫MN∨EF, that is, OF/BN=FG/BG= 1/2.
BN=2OF=√5
∫MN∨PE(EF)
∴∠AMB=∠APE=∠ABP=90
∠∠PAB =∠BAM
∴△ABM∽△APB
∴AB/AP=BM/BP
BM = ab×BP/AP = 4×2/2ì5 = 4ì5/5
∴MN=BM+BN=4√5/5+√5=9√5/5