16, process:
y= -(√3/3)x+b
y=k/x
∴ k/x=-(√3/3)x+b
If the denominator is removed, the root number 3x-3bx+3k = 0.
Let its two roots be x 1, x2, then x 1x2= (root number 3) k.
y= -(√3/3)x+b
When y=0, b/x=(√3)/3.
The angle between the straight line AC and the X axis is 30.
∴ AB = X 1/COS30 = (root number 3) x1/2; Ac = x2/cos30 = (root number 3) x2/2;
∴ AB*AC=x 1*x2*[ (root number 3)/2] = x 1 * x2 * 4/3.
AB*AC=4。
∴x 1x2=3
X 1x2= (root number 3) k.
K = root number 3