(y: original function; Y': derivative function)
1, y=c, y'=0(c is a constant).
2, y = x μ, y' = μ x (μ- 1) (μ is constant, μ≠0).
3、y=a^x,y'=a^x lna; y=e^x,y'=e^x。
4、y=logax,y ' = 1/(xlna)(a & gt; 0 and a ≠1); y=lnx,y'= 1/x .
5、y=sinx,y’= cosx .
6、y=cosx,y'=-sinx .
7、y=tanx,y'=(secx)^2= 1/(cosx)^2。
8、y=cotx,y'=-(cscx)^2=- 1/(sinx)^2。
9、y=arcsinx,y'= 1/√( 1-x^2)。
10、y=arccosx,y'=- 1/√( 1-x^2)。
1 1、y=arctanx,y'= 1/( 1+x^2)。
12、y=arccotx,y'=- 1/( 1+x^2)。
13、y=shx,y’= CHX .
14、y=chx,y'=sh x .
15、y=thx,y'= 1/(chx)^2。
16、y=arshx,y'= 1/√( 1+x^2)。
Second, what are the basic elementary functions?
(1) constant function y = c( c is a constant)
(2) power function y = x^a( a is a constant)
(3) exponential function y = a x(a >;; 0.a≠ 1)
(4) logarithmic function y = log (a) x (a >; 0.a≠ 1。 Real number x>0)
(5) trigonometric functions and inverse trigonometric functions (such as sine function: y =sinx sine function: y = sine x, etc.). )
The basic elementary function, the so-called elementary function, is the function that the basic elementary function is composed of four operations and several times. Elementary function is a function composed of basic elementary functions through finite rational operations and compounding, which can be expressed by a formula. Basic elementary functions and elementary functions are continuous functions within their defined intervals. Functions that are not elementary functions are called non-elementary functions, such as Dirichlet function and Riemann function.