Current location - Training Enrollment Network - Mathematics courses - Mathematics on clocks and watches
Mathematics on clocks and watches
The problem of clocks and watches is actually a retrospective problem;

First of all, we should understand that the minute hand turns 6 degrees per minute and the hour hand turns 0.5 degrees per minute, (360 divided by 60 = 6 degrees per minute; 360 divided by (12x 60)= 0.5/ min)

Then catch up with the problem;

1 and 7 o'clock, the included angle between the minute hand and the hour hand is 2 10, and 2 10 divided by (6-0.5)=420/ 1 1 min.

2. At eight o'clock, the angle between hands is 240 degrees, (240-60) divided by (6-0.5) = 360/1min.

(240+60) divided by (6-0.5)=600/ 1 1 min.

Answer: The hour hand and the minute hand coincide after 7: 00 1, 420/ 1 1 minute.

2, 360/ 1 1 min or 600/ 1 1 min, the angle between the hour hand and the minute hand is 60 degrees.