It is proved that the quadrilateral ABCD as shown in figure 1 and ∵ is a square, and P and C coincide.
∴OB=OP,∠BOC=∠BOG=90。
∵PF⊥BG,∠PFB=90,
∴∠GBO=90 -∠BGO,
∠EPO=90 -∠BGO,
∴∠GBO=∠EPO,
In delta swamp and delta slope,
∠GBO =∠ Osi
OB=OC
∠BOG=∠COE
∴△BOG≌△POE.
∴OE=OG,
∫∠EOG = 90 degrees,
∴ Rotate the line segment oe 90 clockwise around the O point to get OG.
And ∵OB=OP, ∠ pob = 90,
∴ Rotate the line segment op 90 clockwise around the O point to get OB.
∴△BOG can be obtained by rotating △POE 90 degrees clockwise around the O point.
(2) As shown in Figure 2, let PM∑AC pass through BG in M and BO in N,
∴∠PNE=∠BOC=90,∠BPN=∠OCB,
∠∠obc =∠OCB = 45 ,∴∠nbp=∠npb,
∴NB=NP.
∠∠MBN = 90-∠BMN∠NPE = 90-∠BMN,
∴∠MBN=∠NPE,
In the △BMN and △ pens.
∠MBN=∠NPE
NB=NP
∠MNB=∠ENP
∴△BMN≌△PEN,
∴BM=PE.
∫∠BPE = 1/2
∠ACB∠BPN =∠ACB,
∴∠BPF=∠MPF.
∵PF⊥BM,∴∠BFP=∠MFP=90。
Also in △BPF and △MPF
BPF =∠ MPF
PF=PF
∠BFP=∠MFP
∴△BPF≌△MPF,
∴BF=MF, namely BF= 1/2?
BM,
∴BF= 1/2PE, namely BF /PE= 1/2.
.
(3) As shown in Figure 2, the intersection P is PM∑AC, BG is M, and BO is N,
∴∠BPN=∠BCA,
∫∠BPE = 1/2∠BCA,
∴∠BPF=∠MPF,
∵PF⊥BG,
∴∠BFP=∠MFP,
At △BFP and △MFP.
∠BFP=∠MFP
PF=PF
∠BPF =∠ MPF
∴△BFP≌△MFP(ASA),
∴BF=FM,
That is BF= 1/2.
BM,
The quadrilateral ABCD is a diamond,
∴DB⊥AC,
∫PM∑AC,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=90,
∴∠BNM=90
∫∠PFM = 90 degrees,
∴∠MBN+∠BMN=90,∠MPF+∠BMN=90,
∴∠MBN=∠NPE,
∠∠BNM =∠ENP,
∴△BMN∽△PEN.
∴BM/? PE=BN? /PN
,
∫tanα= BN/PN = BM/? PE
=2BF/? PE
∴BF/? PE
= 1/2 tanα。