Current location - Training Enrollment Network - Mathematics courses - Mathematics Elective Course 1 1 Examination Paper
Mathematics Elective Course 1 1 Examination Paper
Elective course 2-2 1.6 Basic Theorem of Calculus

First, multiple choice questions

1. The following integral is correct ()

Shang ()

A. there is a maximum value of 0, and there is no minimum value.

B the maximum value is 0 and the minimum value is -323.

C. there is a minimum value of -323, and there is no maximum value.

D. there is neither a maximum nor a minimum.

[answer] b

[resolution] f (x) = 0x (t2-4t) dt =13t3-2t2x0 =13x3-2x2 (-1≤ x ≤ 5).

F' (x) = x2-4x, from f' (x) = 0, x = 0 or x = 4, as shown in the following table:

x(- 1,0)0(0,4)4(4,5)

f′(x)+0-0+

F(x)? Maximum and minimum?

It can be seen that the maximum f (0) = 0 and the minimum f (4) =-323.

F (- 1) =-73,F (5) =-253。

∴ The maximum value is 0 and the minimum value is -323.

Second, fill in the blanks

1 1. Calculate the definite integral:

① 1- 1x2dx=________

②233x-2x2dx=________

③02|x2- 1|dx=________

④0-π2|sinx|dx=________

[Answer] 23; 436; 2; 1

[resolution] ①1-1x2dx =13x31-1= 23.

②233x-2x2dx=32x2+2x32=436。

③02 | x2- 1 | dx = 0 1( 1-x2)dx+ 12(x2- 1)dx

= x- 13x 3 10+ 13x 3-x 2 1 = 2。

[Answer] 1+π 2

13.(20 10? Shaanxi Institute, 13) If any point M(x, y) is taken from the rectangular area as shown in the figure, the probability that the point m takes the shaded part is _ _ _ _ _ _.

[Answer] 13

[Analysis] If the area of a rectangle is S 1 = 3, S Yin = 013x2xdx = x 310 =1,then P = S 1s Yin = 13.

14. It is known that f (x) = 3x2+2x+ 1. If 1- 1f (x) dx = 2f (a) holds, then a = _ _ _ _ _ _

[Answer]-1 or 13

[resolution] from the known f (x) = x3+x2+x, f (1) = 3, f (- 1) =- 1,

∴ 1- 1f(x)dx=f( 1)-f(- 1)=4,

∴2f(a)=4,∴f(a)=2.

That is 3A2+2A+ 1 = 2. The solution is A =- 1 or 13.

Third, answer questions.

15. Calculate the following definite integral:

( 1)052 xdx; (2)0 1(x2-2x)dx;

(3)02(4-2x)(4-x2)dx; (4) 12x2+2x-3xdx。

[resolution] (1) 052xdx = x250 = 25-0 = 25.

(2)0 1(x2-2x)dx = 0 1x2dx-0 12 xdx

= 13x 3 10-x 2 10 = 13- 1 =-23。

(3)02(4-2x)(4-x2)dx = 02( 16-8x-4x 2+2x 3)dx

= 16x-4x 2-43x 3+ 12x 420

=32- 16-323+8=403.

(4) 12 x2+2x-3xdx = 12x+2-3xdx

= 12 x2+2x-3 lnx 2 1 = 72-3 LN2。

16. Calculate the following definite integral:

[Analysis] (1) If f (x) = 12 sin2x, then f'(x)= cos2x.

= 12 1-32= 14(2-3).

(2) Let f (x) = x22+lnx+2x, then

f′(x)= x+ 1x+2。

∴23x+ 1x2dx=23x+ 1x+2dx

=F(3)-F(2)

=92+ln3+6- 12×4+ln2+4

=92+ln32。

(3) If f (x) = 32x2-cosx, then f' (x) = 3x+sinx.

17. Calculate the following definite integral:

( 1)0-4 | x+2 | dx;

(2) Given f (x) =, find the value of 3- 1f (x) dx.

[Resolution ]( 1)∫f(x)= | x+2 | =

∴0-4|x+2|dx=-4-2(x+2)dx+0-2(x+2)dx

=- 12 x2+2x-2-4+ 12 x2+2x 0-2

=2+2=4.

(2)∫f(x)= 1

∴3- 1f(x)dx=0- 1f(x)dx+0 1f(x)dx+ 12f(x)dx+23f(x)dx=0 1( 1-x)dx+ 12(x- 1)dx

=x-x22 10+x22-x2 1

= 12+ 12= 1.

18.( 1) Given f(a) = 0 1 (2ax2-a2x) dx, find the maximum value of f(a);

(2) it is known that f (x) = ax2+bx+c (a ≠ 0), and f (- 1) = 2, f' (0) = 0,01f (x) dx =-2, and find a, b, dx.

[Analysis] (1) Let f (x) = 23ax3- 12a2x2.

Then f' (x) = 2ax2-a2x.

∴f(a)=0 1(2ax2-a2x)dx

= F( 1)-F(0)= 23a- 12 a2

=- 12a-232+29

When a = 23, the maximum value of f(a) is 29.

(2)∵f(- 1)=2,∴a-b+c=2①

And ∵f'(x)= 2ax+b, ∴f'(0)= b = 0②.

And 01f (x) dx = 01(ax2+bx+c) dx.

Let f (x) =13ax3+12bx2+CX.

Then f' (x) = AX2+BX+C.

∴0 1f(x)dx=f( 1)-f(0)= 13a+ 12b+c=-2③

For solution ① ② ③, A = 6, b = 0 and c =-4.