∫△ABC, where BA=BC.
∴ ∠A=∠C
* df⊥ac
∴ ∠DFA=∠EFC=90
∴, ∠ D = 90-∠ A in Rt△DFA.
Similarly, in Rt△EFC, ∠ cef = 90-∠ c.
∴ ∠D=∠CEF
I went to bed again.
∴∠BED=∠D
△ DBE is an isosceles triangle.
2.( 1) Proof:
∵ △ABC and△△△ CDE are equilateral triangles.
∴ BC=AC,CE=CD,∠BCF=∠DCH=60
∴ ∠BCF+∠FCH=∠DCH+∠FCH
That is ∠BCE=∠ACD
∴△BCE?△ACD(SAS)
(2) prove that:
∫△BCE?△ACD
∴ ∠CBF=∠CAH
∠∠BCF+∠DCH+∠FCH = 180。
∠∠BCF =∠DCH = 60。
∴∠fch=60 =∠ ace
∴∠BCF=∠ACE
BC = AC
∴△BCF?△ace
∴ CF=CH
(3) prove that:
CF = CH
∴ △CFH is an isosceles triangle
∴ ∠CFH=∠CHF
And fch = 60, and < cfh+< CHF+< fch =180.
∴ ∠CFH=∠CHF=∠FCH=60
∴ △CFH is an equilateral triangle
3. Proof: Connect CE
∫△ABC is an equilateral triangle
∴ BC=AC,∠ACB=60
EA = EB,EC=EC。
∴△BCE?△ace(SSS)
∴ ∠BCE=∠ACE=( 1/2)∠ACB=30
In △CBE and △DBE.
Divide DBC equally
∴∠CBE=∠DBE
BD = AC
∴ BD=BC
Become again
∴△CBE?△DBE(SAS)
∴ brominated diphenyl ether = brominated diphenyl ether
∫∠BCE = 30。
∴ ∠BDE=30