x→arcs inx; x→tanx; x→arctanx; x→ln( 1+x); x→(e^x- 1);
[( 1+x)^n- 1]→nx; ( 1-cosx)→x * x/2; a^x- 1→xlna,ln( 1+x)→x; So is mclaughlin's formula,
That symbol is difficult to write. You can find it in textbooks or exercises. For example: 1 limx→0tanx-sinxx3.
Give a few examples with infinitesimal.
Example 1 limx→0tanx-sinxx3
Solution: The original formula = limx → 0 sinx (1-cosx) x3 cosx = limx → 0x12x2x3 (∵ sinx ~ x, 1-cosx ~ x22) = 12.
This problem can also be solved by Robita's law, but not by property ④.
∵ tanx-sinxx3=x-xx3=0, which does not meet the condition of property ④, otherwise the wrong conclusion is 0.
Example 2 limx→0e2x-3 1+xx+sinx2
Solution: The original formula = limx → 0e2x-1-(31+x-1) x+x2 = limx → 02x-13xx (1+x) = 53.
Example 3 limx→0( 1x2-cot2x)
Solution 1: original formula = LIMX→0 sin 2 x-x2 cos 2 x2 sin 2 x.
= limx→0(sinx+xcosx)(sinx-xcosx)x4
= limx→0x 2( 1+cosx)( 1-cosx)x4(∵sinx ~ x)
= limx→0( 1+cosx)( 1-cosx)x2
= limx→0 12 x2( 1+cosx)x2 = 1
Solution 2: Original formula = limx→0 tan2x-x2 tan2x
=limx→0(tanx+x)(tanx-x)x4
=limx→02x(tanx-x)x44 (∵ tanx~x)
=limx→02(tanx-x)x3
=limx→02(sec2x- 1)3x2
=23limx→0tan2xx2=23 (∵ tanx~x)
Example 4 [3] limx → 0+tan (sinx) sin (tanx)
Solution: Original formula = limx → 0+sec2 (sinx) cosx2tan (sinx) cos (tanx) sec2x2sin (tanx) (according to Robita's law).
= limx → 0+sec2 (sinx) cosxcos (tanx) sec2xlimx → 0+sin (tanx) tan (sinx) (separation of non-zero limit product factors)
=limx→0+sin(tanx)tan(sinx) (calculate non-zero limit)
= limx → 0+cos (sinx) sec2x2sin (tanx) sec2 (sinx) cosx2tan (sinx) (according to Robita's law)
= limx→0+cos(sinx)sec 2 xsec 2(sinx)cosx limx→0+tan(sinx)sin(tanx)
=limx→0+tan(sinx)sin(tanx)
There is a cycle, and at this time, the result cannot be obtained by Robita's law. What shall we do? Replace it with equivalent infinitesimal.
∫x ~ sinx ~ tanx(x→0)
∴ Original formula =limx→0+xx= 1 and get the solution.