∫∠B = 90,AD∨BC,
∴∠BAD=∠B=∠DFB=90,
∴ Quadrilateral ADFB is a rectangle,
∴AB=DF=3,AD=BF= 1
BC = 4,
∴FC=BC-BF=3,
∴DF=FC,
△ DFC is an isosceles right triangle,
∴∠C=45,
∴NP⊥BC,
△ NPC is an isosceles right triangle;
(2)∫△ABM?△MPN,
∴BM=NP=PC=x,AB=MP=3,
∫MP = BC-(BM+PC)= 4-2x,
∴4-2x=3,x = 12;
(3)∵AB⊥BC,NP⊥BC,
∴ quadrilateral ABPN is a right-angled trapezoid,
∴y= 12×(ab+pn)×bp= 12(3+x)×(4-x)
= 12(-x2+x+ 12)
=- 12x2+ 12x+6,
When x= 12, the maximum value of y is 498.