Current location - Training Enrollment Network - Mathematics courses - High school mathematics trigonometric function problem!
High school mathematics trigonometric function problem!
1.w is a positive real number, and the function f(x)=2sinwx is the increasing function on [-π/3, π/4]. Find the range of w:

Answer: 0 < w ≤ 3/2

Sinx increasing interval (2kπ-π/2, 2kπ+π/2)

Sinwx increasing interval 2kπ-π/2

Interval contains 0

So it should be -π/2.

w & gt0

-π/2w & lt; x & ltπ/2w

(-π/3, π/4) is a subinterval.

So-π/2w

1/2w >= 1/3

w & lt=3/2

π/4 & lt; =π/2w

w & lt=2

0 & ltw & lt=3/2

Answer: 0 < w ≤ 3/2

2. Sin (π/2+a)+COS (π/2-a) =1/5a ∑ (0, π) to find tana?

cos(a)+sin(a)= 1/5

Both sides are squares,

1+2sinacosa= 1/25,

sin2a=-24/25,

Cos2a = (1-sin 2 (2a)) 0.5 = July 25th.

cosa= [( 1 cos(2a))/2]^0.5

cosa= 4/5,cosa= 3/5

sina= 3/5sin= 4/5

a∈(0,π)

Sina = 3/5 Sina =4/5

cosa+sina= 1/5

cosa=-3/5sina=4/5

tana=cosa/sina

Answer: -4/3

3. What is the minimum positive period and maximum value of the function y=sin(2x+π/6)-cos(2x+π/3)?

y=sin(2x+π/6)-cos(2x+π/3)

=sin2x*(3^0.5/2)+cos2x*( 1/2)-cos2x*( 1/2)+sin2x*(3^0.5/2)

=3^0.5sin(2x)

Minimum positive period T=2π/2=π

The maximum value is √3

Answer: π, 1 (What should I do with this function? )

4,5 π < A < 6 π, cosA/2=a, looking for Sina /4?

sin(a/2)=(( 1-cos(a/2)/2)^0.5

= (( 1-a)/2)^0.5