Current location - Training Enrollment Network - Mathematics courses - Middle school math short story speech (3 minutes) is badly needed.
Middle school math short story speech (3 minutes) is badly needed.
(1) Zu Chongzhi's outstanding achievement in mathematics is the calculation of pi. Before Qin and Han Dynasties, people took "the diameter of three weeks a week" as pi, which was called "Gubi". Later, it was found that the error of Gubi was too large, and the pi should be "the diameter of a circle is greater than the diameter of three weeks", but there are different opinions on how much is left. Until the Three Kingdoms period, Liu Hui put forward the calculation of pi. The circumference of a circle inscribed with a regular polygon is used to approximate the circumference of a circle. Liu Hui calculated the circle inscribed with a 96-sided polygon and got π=3. 14, and pointed out that the more sides inscribed with a regular polygon, the more accurate the π value obtained. On the basis of predecessors' achievements, Zu Chongzhi devoted himself to research and repeated calculations. It is found that π is between 3. 14 15926 and 3. 14 15927, and the approximate value in the form of π fraction is obtained as the reduction rate and density rate, where the six decimal places are 3. 14 1929. There's no way to check now. If he tries to find it according to Liu Hui's secant method, he must work out 16384 polygons inscribed in the circle. How much time and labor it takes! It is obvious that his perseverance and wisdom in academic research are admirable. It has been more than 1000 years since foreign mathematicians obtained the same result in the secrecy rate calculated by Zu Chongzhi. In order to commemorate Zu Chongzhi's outstanding contribution, some mathematicians abroad suggested that π = be called "ancestral rate".

(2) At the age of seven, Gauss entered St. Catherine's Primary School. When I was about ten years old, my teacher had a difficult problem in arithmetic class: "Write down the integers from 1 to 100 and add them up! Whenever there is an exam, they have this habit: the first person who finishes it puts the slate face down on the teacher's desk, and the second person puts the slate on the first slate, thus falling one by one. Of course, this question is not difficult for people who have studied arithmetic progression, but these children are just beginning to learn arithmetic! The teacher thinks he can have a rest. But he was wrong, because in less than a few seconds, Gauss had put the slate on the lecture table and said, "Here's the answer! Other students added up the numbers one by one, sweating on their foreheads, but Gauss sat quietly, ignoring the contemptuous and suspicious eyes cast by the teacher. After the exam, the teacher checked the slate one by one. Most of them were wrong, so the students were whipped. Finally, Gauss's slate was turned over and there was only one number on it: 5050 (needless to say, this is the correct answer. The teacher was taken aback, and Gauss explained how he found the answer:1+100 =1,2+99 =10/,3+98 =/kloc-. A * * * has 50 pairs, and the sum is 10 1, so the answer is 50 × 10 1 = 5050. It can be seen that Gauss found the symmetry of arithmetic progression, and then put the numbers together in pairs, just like the general arithmetic progression summation process.