Simultaneous equation:
{mx^2+ny^2= 1
{y=-x+ 1
Eliminate y and get:
mx^2+n(-x+ 1)^2= 1
Finishing, you must:
(m+n)x^2-2nx+n- 1=0
Let A(x 1, y 1) and B(x2, y2).
From Vieta's theorem, I get:
x 1+x2=2n/(m+n)
x 1x2=(n- 1)/(m+n)
∵ The abscissa of point m in AB is 2-√ 2.
∴(x 1+x2)/2=2-√2
X 1+x2 = 4-2 √ 2 = 2n/(m+n) ①.
| ab | 2 = ( 1+k 2)? 【(x 1+x2)^2-4x 1x2]=2? [24- 16√2-4x 1x2]=8
X1x 2 = 5-4 √ 2 = (n-1)/(m+n) ②.
Simultaneous ① ②, the solution is:
{m= 1/3
{n=(√2)/3
The elliptic equation is x 2/3+(√ 2/3) y 2 =1.