Divide the left and right sides of the above formula by 2 at the same time (n+1), and you get
a(n+ 1)/2^(n+ 1)=an/2^n+3*( 1/2)^(n+ 1)
Remember bn = an/2 n
∴b(n+ 1)=bn+3*( 1/2)^(n+ 1)
∴b(n+ 1)-bn=3*( 1/2)^(n+ 1)
∴bn-b(n- 1)=3*( 1/2)^n
……
b3-b2=3*( 1/2)^3
b2-b 1=3*( 1/2)^2
Superposition method, the left and right sides of the equation are all added.
bn-b 1=3*(( 1/2)^2+( 1/2)^3+……+( 1/2)^n)=3* 1/4*( 1-( 1/2)^(n- 1))/( 1- 1/2)=3/2*( 1-( 1/2)^(n- 1))
=3/2-3*( 1/2)^n
∫b 1 = a 1/2 = 5 * 2
∴bn=3/2-3*( 1/2)^n+b 1=4-3*( 1/2)^n
∴ an = bn * 2n = (4-3 * (1/2) n) * 2n = 2 (n+2)-3 is what you want.