In Rt△ABC, ∠ c = 90, cosB=BCAB=35, let BC=3x, then AB=5x.
AC=AB2? BC2=4x,
At Rt△HBC, cosB=BHBC=35, BC=3x,
∴BH=95x,
∵Rt△ABC rotates around vertex C to get RT △ A ′ B ′ C, where point B ′ falls right on AB.
∴ca′=ca=4x,cb′=cb,∠a′=∠a,
∵ch⊥bb′,
∴b′h=bh=95x,
∴ab′=ab-b′h-bh=75x,
∠∠ADB′=∠A′DC,∠A′=∠A,
∴△adb′∽△a′dc,
∴AB'A'C=B'DDC, that is, 75x4x=B'DDC,
∴b′ddc=720.
So the answer is 720.