Basic inequality
Please refer to the following:
1/(a? (b+c))+ 1/(b? (a+c))+ 1/(c? (a+b))
=[ 1/(a? (b+c))+ 1/(b? (a+c))+ 1/(c? (a+b))](abc)?
=(b? c? )/(b+c)+(a? c? )/(a+c)+(a? b? )/(a+b)
& gt=(bc+ac+ab)? /[2(a+b+c)]
There is an important inequality here, which is actually a variant of Cauchy inequality, which is explained below.
=[a? b? +b? c? +a? c? +2(a? bc+ab? c+abc? )]/[2(a+b+c)]
Because of one? b? +b? c? +a? c?
=( 1/2)(2a? b? +2b? c? +2a? c? )
=( 1/2)(a? b? +b? c? +a? c? +a? b? +b? c? +a? c? )
=( 1/2)[b? (a? +c? )+a? (c? +b? )+c? (b? +a? )]
Using average inequality
& gt=( 1/2)[b? (2ac)+a? (2bc)+c? (2ab)]
=ab? c+a? bc+abc?
=a+b+c
So [a? b? +b? c? +a? c? +2(a? bc+ab? c+abc? )]/2(a+b+c)
& gt=[a+b+c+2(a+b+c)]/[2(a+b+c)]
=3(a+b+c)/[2(a+b+c)]
=3/2 certificate completed
cauchy inequality
(a? +b? +c? )(x? +y? +z? )& gt=(ax+by+cz)?
Turn into
[(a? /x)+(b? /y)+(c? /z)](x+y+z)>=(a? +b? +c? )?
Divide both sides by (x+y+z), that is
(a? /x)+(b? /y)+(c? /z)>=(a? +b? +c? )? /(x+y+z)
There is a key step above which is proved by this inequality.
I hope to adopt O(∩_∩)O~