Current location - Training Enrollment Network - Mathematics courses - International mathematical problems
International mathematical problems
x = 1/a3(B+C)= ABC/a2(A B+BC)= 1/a2( 1/b+ 1/C)。 Therefore, it is only necessary to prove that x 2/(y+z)+y 2/(x+z)+z 2/(x+y) ≥ 3/2, because x 2/(y+z)+(y+z)/4 ≥ x and y 2/(x+) get a certificate.

Basic inequality

Please refer to the following:

1/(a? (b+c))+ 1/(b? (a+c))+ 1/(c? (a+b))

=[ 1/(a? (b+c))+ 1/(b? (a+c))+ 1/(c? (a+b))](abc)?

=(b? c? )/(b+c)+(a? c? )/(a+c)+(a? b? )/(a+b)

& gt=(bc+ac+ab)? /[2(a+b+c)]

There is an important inequality here, which is actually a variant of Cauchy inequality, which is explained below.

=[a? b? +b? c? +a? c? +2(a? bc+ab? c+abc? )]/[2(a+b+c)]

Because of one? b? +b? c? +a? c?

=( 1/2)(2a? b? +2b? c? +2a? c? )

=( 1/2)(a? b? +b? c? +a? c? +a? b? +b? c? +a? c? )

=( 1/2)[b? (a? +c? )+a? (c? +b? )+c? (b? +a? )]

Using average inequality

& gt=( 1/2)[b? (2ac)+a? (2bc)+c? (2ab)]

=ab? c+a? bc+abc?

=a+b+c

So [a? b? +b? c? +a? c? +2(a? bc+ab? c+abc? )]/2(a+b+c)

& gt=[a+b+c+2(a+b+c)]/[2(a+b+c)]

=3(a+b+c)/[2(a+b+c)]

=3/2 certificate completed

cauchy inequality

(a? +b? +c? )(x? +y? +z? )& gt=(ax+by+cz)?

Turn into

[(a? /x)+(b? /y)+(c? /z)](x+y+z)>=(a? +b? +c? )?

Divide both sides by (x+y+z), that is

(a? /x)+(b? /y)+(c? /z)>=(a? +b? +c? )? /(x+y+z)

There is a key step above which is proved by this inequality.

I hope to adopt O(∩_∩)O~