-b/2a=2
b=-4a
y(2)=4a+2b+c=4
c=4+4a
(2)S-triangle ode: S-triangle OEF = 1: 3
DE:EF= 1:3
xE:xF= 1:4
y=ax^2-4ax+4+4a
y=kx+4
ax^2-(4a+k)x+4a=0
xExF=4
XE= 1, xF=4 or
xE=- 1,xF=-4
XE+xF=5 or xE+xF=-5.
4+k/a=5 or 4+k/a=-5.
K=a or k=-9a
Discriminant = 8ak+k 2 > 0
(3)
m^2=(xe-xf)^2+(ye-yf)^2=(xe-xf)^2+k^2*(xe-xf)^2=(k^2+ 1)[(xe+xf)^2-4xe*xf]=
=(k^2+ 1)(25- 16)= 9(k^2+ 1)∈( 18,45)
(k^2+ 1)∈(2,5)
[ 1]
k=a
a^2∈( 1,4)
a∈(-2,- 1)∩( 1,2)
[2]
k=-9a
8 1a^2∈( 1,4)
a∈(-2/9,- 1/9)∩( 1/9,2/9)
Therefore, a ∈ (-2,-1)∩(-2/9,-1/9)∩( 1/9, 2/9) ∩ (/kloc-0)