A 1。 B 2。 c? 3.d? 4.
As can be seen from the figure, when the abscissa of point B is 1, the vertex of the parabola is (-1, 4), and the analytical formula of the parabola is: y=a(x+ 1)2+4. If you substitute the coordinates of point B, then:
0=a( 1+ 1)2+4,a=- 1,
That is, when the abscissa of point B takes the minimum value, the analytical formula of parabola is: y =- 1 (x+ 1) 2+4.
When the abscissa of point A takes the maximum value, the vertex of parabola should take (3, 1), then the analytical formula of parabola at this time is: y =-(x-3) 2+1=-x2+6x-8 =-(x-2) (x-4).
∴A(2,0)、B(4,0).
So choose B.