The area is deduced as follows
Let M(x, y)
Derived from the second definition
F 1M=a+ex
F2M=a-ex
F 1F2=2c
Area S=F 1M×F2M×sina/2=(a? -e? x? ) Sina /2 (#)
F 1M? +F2M? -2F 1M×F2Mcosa=(2c)? (Cosine theorem)
Answer? +e? x? +2aex+a? +e? x? -2aex-2(a? -e? x? )cosa=4c?
e? x? +e? x? cosa=2c? +a? cosa-a?
e? x? ( 1+cosa)=2c? +a? cosa-a?
e? x? =(2c? +a? cosa-a? )/( 1+cosa)
(#)=[a? -(2c? +a? cosa-a? ) /( 1+cosa)] Sina /2
=(2a? -2c? ) Sina /( 1+cosa)/2=b? Sina /( 1+cosa)
Sina/( 1+cosa)=tan(a/2) (half-angle formula)
∴S=(#)=b? Tan (1/2)