Let t=cosx∈[- 1, 1]
y=2t? -2at-(2a+ 1)
=2(t? -At +a? /4)-(a? /2+2a+ 1)
=2(t-a/2)? -(a? /2+2a+ 1)
This is a quadratic function about t, but t∈[- 1, 1]
To find the expression of the minimum value of a function, it is necessary to discuss the symmetry axis.
Three positional relationships between t=a/2 and interval [- 1, 1].
1) When A/2 ≤- 1, that is, A ≤- 2, [- 1, 1] is on the right side of the symmetry axis, the function increases.
∴t=- 1, and y takes the minimum value f(a)=y|(t=- 1)= 1.
2) When-1
The function decreases on [- 1, a/2] and increases on [a/2, 1].
∴t=a/2, y takes the minimum value f(a)=y|(t=a/2)=-a? /2-2a- 1
3) When a/2≥ 1, that is, a≥2, [- 1, 1] is on the left side of the symmetry axis, the function decreases.
∴t= 1, and y takes the minimum value f (a) = y | (t =1) =1-4a.
To sum up, the function minimum expression f(a) is segmented:
{ 1,(a≤-2)
f(a)={-a? /2-2a- 1,(-2 & lt; a & lt2)
{ 1-4a,(a≥2)
(2)
If f(a)= 1/2, only -2.
∴-a? /2-2a- 1= 1/2
Answer? The solution of +4a+3=0 gives a=- 1 or a=-3 (truncation).
∴a=- 1
Y=2t at this time? +2t+ 1,
When t= 1, y takes the maximum value of 5.