Let P(x 1, y 1) and Q(x2, y2), then x 1+y 1, x2+y2= 1, that is, y 1 = 65438.
∵OP⊥OQ
∴ vector op vector OQ=x 1x2+y 1y2=0.
y 1 y2 =( 1-x 1)( 1-x2)= x 1x 2-(x 1+x2)+ 1
∴x 1x2+y 1y2=2x 1x2-(x 1+x2)+ 1=0
Simultaneous elliptic straight line
(a? +b? )x? -2a? x+a? -a? b? =0
x 1x2=(a? -a? b? )/(a? +b? ),x 1+x2=(2a? )/(a? +b? )
∴x 1x2+y 1y2=2(a? -a? b? )/(a? +b? )- (2a? )/(a? +b? ) + 1 =0
-2a? b? /(a? +b? )=- 1
2a? b? =a? +b?
∴ 1/a? + 1/b? =(a? +b? )/a? b? =2
(2).
1/a? + 1/b? =2
∴a? =b? /(2b? - 1)
√3/3≤e≤√2/2
1/3≤e? ≤ 1/2
1/3≤c? /a? ≤ 1/2
1/3≤(a? -B? )/a? ≤ 1/2
1/3≤ 1 - b? /a? ≤ 1/2
Put one? =b? /(2b? - 1).
1/3≤2- 2b? ≤ 1/2
3/4≤b? ≤5/6
√3/2≤b≤√30/6
√3≤2b≤√30/3
2( 1).
According to the definition of ellipse, C is an ellipse whose focus is on the Y axis.
While 2a=4 and c=√3.
∴b= 1
∴c equation is x? + y? /4= 1
(2).
Let A(x 1, y 1) and B(x2, y2), then y 1=kx 1+ 1, y2=kx2+ 1.
∵OA⊥OB
∴x 1x2+y 1y2=0
y 1 y2 =(kx 1+ 1)(kx2+ 1)= k? x 1x 2+k(x 1+x2)+ 1
∴x 1x2+y 1y2=( 1+k? )x 1x 2+k(x 1+x2)+ 1 = 0
Both ellipse and straight line
(4+k? )x? +2kx-3=0
x 1x2=-3/(4+k? ),x 1+x2=-2k/(4+k? )
∴-3( 1+k? )/(4+k? )-2k? /(4+k? )+ 1=0
Solve k? = 1/4,k= 1/2
|AB|=√[(x 1-x2)? +(y 1-y2)? ]
=√[(x 1-x2)? +(kx 1+ 1-kx2- 1)? ]
=√[(x 1-x2)? +k? (x 1-x2)? ]
=√[( 1+k? )(x 1-x2)? ]
=√{( 1+k? )[(x 1+x2)? -4x 1x2}
=√{( 1+k? )*[4k? /(4+k? )? + 12/(4+k? )]}
=(4/ 17)√65
Finally, I don't know if the calculation is correct. Did you play k again? =1/4th generation, go in and calculate. Adopt it! ! !