Current location - Training Enrollment Network - Mathematics courses - High school math! Ellipse!
High school math! Ellipse!
1( 1).

Let P(x 1, y 1) and Q(x2, y2), then x 1+y 1, x2+y2= 1, that is, y 1 = 65438.

∵OP⊥OQ

∴ vector op vector OQ=x 1x2+y 1y2=0.

y 1 y2 =( 1-x 1)( 1-x2)= x 1x 2-(x 1+x2)+ 1

∴x 1x2+y 1y2=2x 1x2-(x 1+x2)+ 1=0

Simultaneous elliptic straight line

(a? +b? )x? -2a? x+a? -a? b? =0

x 1x2=(a? -a? b? )/(a? +b? ),x 1+x2=(2a? )/(a? +b? )

∴x 1x2+y 1y2=2(a? -a? b? )/(a? +b? )- (2a? )/(a? +b? ) + 1 =0

-2a? b? /(a? +b? )=- 1

2a? b? =a? +b?

∴ 1/a? + 1/b? =(a? +b? )/a? b? =2

(2).

1/a? + 1/b? =2

∴a? =b? /(2b? - 1)

√3/3≤e≤√2/2

1/3≤e? ≤ 1/2

1/3≤c? /a? ≤ 1/2

1/3≤(a? -B? )/a? ≤ 1/2

1/3≤ 1 - b? /a? ≤ 1/2

Put one? =b? /(2b? - 1).

1/3≤2- 2b? ≤ 1/2

3/4≤b? ≤5/6

√3/2≤b≤√30/6

√3≤2b≤√30/3

2( 1).

According to the definition of ellipse, C is an ellipse whose focus is on the Y axis.

While 2a=4 and c=√3.

∴b= 1

∴c equation is x? + y? /4= 1

(2).

Let A(x 1, y 1) and B(x2, y2), then y 1=kx 1+ 1, y2=kx2+ 1.

∵OA⊥OB

∴x 1x2+y 1y2=0

y 1 y2 =(kx 1+ 1)(kx2+ 1)= k? x 1x 2+k(x 1+x2)+ 1

∴x 1x2+y 1y2=( 1+k? )x 1x 2+k(x 1+x2)+ 1 = 0

Both ellipse and straight line

(4+k? )x? +2kx-3=0

x 1x2=-3/(4+k? ),x 1+x2=-2k/(4+k? )

∴-3( 1+k? )/(4+k? )-2k? /(4+k? )+ 1=0

Solve k? = 1/4,k= 1/2

|AB|=√[(x 1-x2)? +(y 1-y2)? ]

=√[(x 1-x2)? +(kx 1+ 1-kx2- 1)? ]

=√[(x 1-x2)? +k? (x 1-x2)? ]

=√[( 1+k? )(x 1-x2)? ]

=√{( 1+k? )[(x 1+x2)? -4x 1x2}

=√{( 1+k? )*[4k? /(4+k? )? + 12/(4+k? )]}

=(4/ 17)√65

Finally, I don't know if the calculation is correct. Did you play k again? =1/4th generation, go in and calculate. Adopt it! ! !