(2) 1/(x+3)>0 to obtain x & gt-3.
The definition domain of the inverse function is the original function value domain, so find the original function value domain first.
(3)x & gt; 1/3
3x- 1 >0
y∈R
y/2=log2(3x- 1)
2^(y/2)=3x- 1
x=[2^(y/2)+ 1]/3
The inverse function is y = [2 (x/2)+ 1]/3, x ∈ r.
(4) let u = 2 x, u >;; 0
y = u/(u+ 1)=[(u+ 1)- 1]/(u+ 1)= 1- 1/(u+ 1)
U>0 and then u+1>; 1,0 & lt; 1/(u+ 1)& lt; 1,- 1 & lt; - 1/(u+ 1)& lt; 0,0 & lt; y & lt 1
y=u/(u+ 1)
yu+y=u
u=y/( 1-y)
2^x=y/( 1-y)
X = log (2) [y/(1-y)] (base 2)
y=log(2)[x/( 1-x)] x∈(0, 1)
(5)y=u^2,u=2x- 1
(6)y=e^u,u=3x+8
(7)y= cube root number u, u = v 2, v = 1-lnx.
(8)y=u^3,u=arcsinv,v=ax+b
(9) Simultaneous three inequalities: x 2-1≠ 0,-1≤x≤ 1, and x≥0.
0 ≤ x