Current location - Training Enrollment Network - Mathematics courses - The sixth grade, the second book, Beijing Normal University Edition, is full of mathematical formulas.
The sixth grade, the second book, Beijing Normal University Edition, is full of mathematical formulas.
Round; circular

S region

C circumference π

D= diameter

R= radius

Circumference = diameter ×π=2×π× radius (that is, C=πd=2πr)

Area =πr2

9:

cylinder

Five: volume

tall

s; Jianping

R: bottom radius

C: perimeter of bottom surface

Transverse area = bottom circumference × height.

Surface area = side area+bottom area ×2

Volume = bottom area × height

Volume = transverse area ÷2× radius

10:

cone

Five: volume

tall

s; Jianping

R: bottom radius

Volume = bottom area × height ÷3

Total number ÷ Total number of copies = average value

Formula of sum and difference problem

(sum+difference) ÷ 2 = large number

(sum and difference) ÷ 2 = decimal

And folding problems.

Sum \ (multiple-1) = decimal

Decimal × multiple = large number

(or

And-decimal = large number)

Difference problem

Difference ÷ (multiple-1) = decimal

Decimal × multiple = large number

(or

Decimal+difference = large number)

Tree planting problem

1:

The problem of planting trees on non-closed lines can be divided into the following three situations:

(1) If trees are planted at both ends of the non-closed line, then:

Number of plants = number of nodes+1 = total length-1.

Total length = plant spacing × (number of plants-1)

Plant spacing = total length ÷ (number of plants-1)

2 If you want to plant trees at one end of the unclosed line and not at the other end, then:

Number of plants = number of segments = total length ÷ plant spacing

Total length = plant spacing × number of plants

Plant spacing = total length/number of plants

(3) If no trees are planted at both ends of the non-closed line, then:

Number of plants = number of nodes-1 = total length-1.

Total length = plant spacing × (number of plants+1)

Plant spacing = total length ÷ (number of plants+1)

2:

The quantitative relationship of planting trees on the closed line is as follows

Number of plants = number of segments = total length ÷ plant spacing

Total length = plant spacing × number of plants

Plant spacing = total length/number of plants

The question of profit and loss

(Profit+Loss) ÷ Difference between two distributions = number of shares participating in distribution.

(Big profit-small profit) ÷ Difference between two distributions = number of shares participating in distribution.

(big loss-small loss) ÷ The difference between two distributions = the number of shares participating in the distribution.

encounter a problem

Meeting distance = speed × meeting time

Meeting time = meeting distance/speed and

Speed Sum = Meeting Distance/Meeting Time

Catch up with the problem

Catch-up distance = speed difference× catch-up time

Catch-up time = catch-up distance ÷ speed difference

Speed difference = catching distance ÷ catching time

Tap water problem

Downstream velocity = still water velocity+current velocity

Countercurrent velocity = still water velocity-current velocity

Still water velocity = (downstream velocity+countercurrent velocity) ÷2

Water velocity = (downstream velocity-countercurrent velocity) ÷2

Concentration problem

Solute weight+solvent weight = solution weight.

The weight of solute/solution × 100% = concentration.

Solution weight × concentration = solute weight

Solute weight-concentration = solution weight.

Profit and discount problem

Profit = selling price-cost

Profit rate = profit/cost × 100% = (selling price/cost-1) × 100%.

Up and down amount = principal × up and down percentage

Discount = actual selling price ÷ original selling price× 1 00% (discount <1)

Interest = principal × interest rate× time

After-tax interest = principal × interest rate × time × (1-20%)