The known function y = √ (x+27)+√ (13-x)+√ x.
Derivative y' =1/(2 √ x)+1/[2 √ (x+27)]-1/[2 √ (13-x))]
Let y'=0
1/(2√x)+ 1/[2 √( x+27)]- 1/[2 √( 13-x))]= 0
The unique maximum value of the solution x=9.
Continue the second derivative y'' =-1[4x (3/2)]-1[4 (x+27) (3/2)]-1[4 (13-x)].
Substituting x value into y'' test:
y ' '(9)=- 1/ 108- 1/864- 1/32
=- 1/24 & lt; According to the definition of the second derivative, 0 is the maximum value when x=9.
The maximum value y(9)=√(9+27)+√( 13-9)+√9.
=√36+√4+√9
=6+2+3
= 1 1
∴ The maximum value at point (9, 1 1) is1,and there is no minimum value.
Visual image: