∠∠PFG =∠E,∠PGF =∠FBE = 90°,FG=BC=EB,
∴△EBF≌△PFG.
Let FB=a, then PG=a,
The sum of the areas of △EFB and quadrilateral AFPD is y = 10 (x+a).
∫PC = 10-x,
∴a 10? x= 1020,
∴a=5? 12x。
∴y= 10(x+a)=50+5x.
(2) the point p moves on the CD,
∴0≤x≤ 10.