Current location - Training Enrollment Network - Mathematics courses - 20 17 Huairou mathematics module 2
20 17 Huairou mathematics module 2
Solution: Solution: (1) As shown in the figure, FG⊥DC is in G.

∠∠PFG =∠E,∠PGF =∠FBE = 90°,FG=BC=EB,

∴△EBF≌△PFG.

Let FB=a, then PG=a,

The sum of the areas of △EFB and quadrilateral AFPD is y = 10 (x+a).

∫PC = 10-x,

∴a 10? x= 1020,

∴a=5? 12x。

∴y= 10(x+a)=50+5x.

(2) the point p moves on the CD,

∴0≤x≤ 10.