Equilateral Delta ADC and Delta BCE
∴AC=CD,BC=CE,∠DCA=∠ECB=60
∴∠DCA+∠DCE=∠ECB+∠DCE
∴∠ACE=∠DCB
In △ACE and △DCB, AC=DC, BC=EC, ∠ACE=∠BCD.
∴△ACE≌△DCB
∴AE=BD
(2) Proof: ∫△ACE?△DCB
∴∠DBC=∠AEC
∠∠DCE = 180 ﹣∠acd﹣∠bce=60 =∠BCE
In △EMC and △BNC, ∠ECB=∠ECM, ∠AEC=∠CBD, EC=BC.
∴△EMC≌△BNC
∴CM=CN
∠∠MCN = 60
∴△CMN is an equilateral triangle.
(3) The conclusion (1) holds for the following reasons:
No matter how many degrees of rotation, AC=CD, BC=CE, ∠ DCA = ∠ ECB = 60, ∠ACE=∠BCD are derived.
∴△ACE≌△DCB
∴AE=BD