∵ quadrilateral ABCD is a rectangle, AF⊥AE.
∴∠DAB=∠ADC=∠ABF=∠EAF=90
∫≈ 1+∠BAE =∠2+∠BAE = 90
∴∠ 1=∠2
∠∠ADC =∠ABF = 90。
∴△ABF∽△ADE
(2) After passing through point M, enter MG⊥FC.
∵ quadrilateral ABCD is a rectangle with de = x.
∴AB=DC=4 ∴CE=4-x
∵MG⊥FC,∠C=90
∴MG∥CE
∴△FMG∽△FEC
M is the midpoint of EF.
∴EF:FM=2: 1
∴CE:MG=2: 1
∴MG= 1/2CE= 1/2(4-x)
I won't write it next. Very simple, I hope to adopt it.