Current location - Training Enrollment Network - Mathematics courses - The eighth grade first volume mathematics factorization problem. 300 lanes. Give as much as you have. The more, the better.
The eighth grade first volume mathematics factorization problem. 300 lanes. Give as much as you have. The more, the better.
( 1)-2x5n- 1yn+4x3n- 1yn+2-2xn- 1yn+4; (2)x3-8y 3-z3-6x yz; (3)a2+B2+C2-2bc+2ca-2ab; (4) A7-A5B2+A2B5-B7。 Solution (1) The original formula =-2xn-1yn (x4n-2x2ny2+y4) =-2xn-1yn [(x2n) 2-2x2ny2+(. 2 (xn+y) 2。 (2) The original formula = x3+(-2y) 3+(-z) 3-3x (-2y) (-z) = (x-2y-z) (x2+4y2+z2+2xy+xz-2yz). The original formula = (A7-A5B2)+(A2B5-B7) = A5 (A2-B2)+B5 (A2-B2) = (A2-B2) (A5+B5) = (A+B) (A+B) (A4-A3B+A2B2) (2) (. (3)(x+ 1)4+(x2- 1)2+(x- 1)4; (4) A3b-AB3+A2+B2+ 1。 The solution (1) decomposes -3 into-1- 1. Original formula = X9+X6+X3- 1. =(x3- 1)(X6+x3+ 1)+(x3+ 1)(x3+ 1)+(x3- 1)=(x3- 1)(X6+2 x3+3)=(x- 1)(x2+x+ 1)(X6+2 x3+3)。 (2) decompose 4mn into 2mn+2mn. Original formula = (m2-1) (N2-1)+2mn+2mn = m2n2-m2-N2+1+2mn = (m2n2+2mn+1). (Mn-M+N+ 1)。 (3) Break (x2- 1)2 into 2 (x2- 1) 2. Original formula = (x+ 1). 4+2 (x+1) 2 (x-1) 2+(x-1) 4]-(x2-1) 2 = (x+1) 2+(x- The original formula = A3b-AB3+A2+B2+1+AB-AB = (A3b-AB3)+(A2-AB)+(AB+B2+1) = AB (A+B) (A-B). +(a b+B2+ 1)=[a(a-b)+ 1](a b+B2+ 1)=(a2-a b+ 1)(B2+a b+ 1)。 ( 1)-2x5n- 1yn+4x3n- 1yn+2-2xn- 1yn+4; (2)x3-8y 3-z3-6x yz; (3)a2+B2+C2-2bc+2ca-2ab; (4) A7-A5B2+A2B5-B7。 Solution (1) The original formula =-2xn-1yn (x4n-2x2ny2+y4) =-2xn-1yn [(x2n) 2-2x2ny2+(. 2 (xn+y) 2。 (2) The original formula = x3+(-2y) 3+(-z) 3-3x (-2y) (-z) = (x-2y-z) (x2+4y2+z2+2xy+xz-2yz). Equation (5) can be directly used to solve the problem as follows: original equation = a2+(-b) 2+C2+2 (-b) c+2ca+2a (-b) = (a-b+c) 2 (4) original equation = (A7-A5B2)+(A2B5-B7) = A5. =(a+b)2(a-b)(a4-a3 b+a2 B2-ab3+B4)( 1)x9+X6+x3-3; (2)(m2- 1)(N2- 1)+4mn; (3)(x+ 1)4+(x2- 1)2+(x- 1)4; (4) A3b-AB3+A2+B2+ 1。 The solution (1) decomposes -3 into-1- 1. Original formula = X9+X6+X3- 1. =(x3- 1)(X6+x3+ 1)+(x3+ 1)(x3+ 1)+(x3- 1)=(x3- 1)(X6+2 x3+3)=(x- 1)(x2+x+ 1)(X6+2 x3+3)。 (2) decompose 4mn into 2mn+2mn. Original formula = (m2-1) (N2-1)+2mn+2mn = m2n2-m2-N2+1+2mn = (m2n2+2mn+1). (Mn-M+N+ 1)。 (3) Break (x2- 1)2 into 2 (x2- 1) 2. Original formula = (x+ 1). 4+2 (x+1) 2 (x-1) 2+(x-1) 4]-(x2-1) 2 = (x+1) 2+(x- The original formula = A3b-AB3+A2+B2+1+AB-AB = (A3b-AB3)+(A2-AB)+(AB+B2+1) = AB (A+B) (A-B). +(ab+B2+1) = [a (a-b)+1] (ab+B2+1) = (a2-ab+1) (4 .10000.000000000016 (2)x4- 1 1x2y 2+y2; (3)x3+9 x2+26x+24; (4) x4- 12x+323.3。 Decomposition factor: (1) (2x2-3x+1) 2-22x2+33x-1; (2)x4+7x 3+ 14x 2+7x+ 1; (3)(x+y)3+2xy( 1-x-y)- 1; (4) (X+3) (X2- 1) (X+5)-20。 First, multiple-choice questions 1. It is known that y2+my+ 16 is completely flat. The value of m is () a.8b.4c.8d.42 The following polynomials can be factorized by the complete square formula: () a.x2-6x-9b.a2-16a+32c.x2-2xy+4Y2D.4a2-4a+65438+. 0+2x)2b . 6a-9-a2 =-(a-3)2c . 1+4m-4 m2 =( 1-2m)2d . x2+xy+y2 =(x+y)2 4。 Put x4-2x2xy2+y4. The result is () a. (x-y) 4b. (x2-y2) 4c. [(x+y) (x-y)] 2d. (x+y) 2 (x-y) 22. Fill in the blanks. It is known that 9x2-6xy+k is completely flat. Then the value of k is _ _ _ _ _ _ _ .6.9a2+(_ _ _ _)+25b2 = (3a-5b) 27. -4x 2+4xy+(_ _ _ _ _ _)=-(_ _ _ _ _ _)。 Then the value of a is _ _ _ _ _ _ _. Third, solve the problem 9. The following factors are decomposed:1a2+10a+252m2-12mn+36n23xy3-2x2y2+x3y4 (x2+4y2) 2-65438+. Find the value of algebraic expression 4x2+ 12xy+9y2. 1 1. It is known that │x-y+ 1│ and x2+8x+ 16 are reciprocal. Find the value of x2+2xy+y2. When solving a problem, if you focus on the whole problem, think, associate and explore from all directions, think and deform as a whole, and determine the solution strategy from different aspects, the problem can be solved quickly. Can you factorize the following formula with holistic thinking method? ① (x+2y) 2-2 (x+2y)+1② (a+b) 2-4 (a+b-1) Reference answer:1.c2.d3.b4.d5.y26-30a. 2x-y 8。 -2 or-12 9. ①(a+5)2; ②(m-6n)2; ③xy(x-y)2; ④(x+2y)2(x-2y)2 10.4 1 1.49 12。 ①(x+2y- 1)2; ②(a+b-2)2 1.2(a-3)(a-3)-a+3 2.9(m+n)(m+n)- 16(m-n)(m-n)3. 15(a-2)-9b(a- 1)(2-a)4. 16a×a×a×a-72a×a×b×b+8 1 b×ban+ 1-4an+4an- 1(3). x3(2x-y)-2x+y(4)。 x(6x- 1)- 1(5). 2ax- 10ay+5by+6x(6). 1-a2-a b- 14 B2 *(7). a4+4(8)。 (x2+x)(x2+x-3)+2(9). x5y-9xy 5( 10)。 -4x 2+3xy+2 y2( 1 1). 4a-a5( 12). 2x 2-4x+ 1( 13). 4 y2+4y-5( 14)3 x2-7X+2 、- m2–N2+2mn+ 1 2 、( a+b)3d–4(a+b)2cd+4(a+b)(x+a)2 –( x–a)2 4。 5.–x5y–xy+2x3y 6。 X6–x4–x2+ 1 7。 (x+3)(x+2)+x2–9 8。 (x–y)3+9(x–y)–6(x–y)2 a2bm+3-2 abm+2+BM+ 1( 17)M4+4 m2-5( 18)-A2+ 1+2ab-B2( 19)(x2+7x+2)2- 16(20)(a b+ / Kloc-0/)2-(. 1, factorization: 9x2-1= _ _ _ _ _ _ _ _ _ _ _ _, 4x2-4x+1= _ _ _ _ _ _ _ _ _ _. If an+2-an = _ _ _ _ _ _ _ _ _ 2 and the polynomial x2+MX+36 are completely flat, then m = _ _ _ _ _ _ _ and the polynomial x2+ax+b can be factorized. If the value of the polynomial x3-4x2-9x+m is 0, then m = _ _ _ _ _ _ _ _ _ _ _ _ _ The result of polynomial factorization is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. _ factorization is ............................ () (a) (a+3) = a2-9 (b) 4a2+4a+3 = (2a+1) 2+2 (c) x2-. 1, the number of polynomials that can be completely square decomposed is the correct decomposition number ............................ ()13xy+6y2-x-2y = (3xy-x)+(6y2-2y) 23xy+6y2-x-2y = (3xy+6y2)- (ax+by)2+(bx–ay)2) 1。 Which of the following polynomials contains a factor of 2x+3 (1) 2x+3+3 (2) 4x2-9? ( 1)(x-6)(2)(x+7)(3)(2x-3)(4)(2x+3)(3)。 A × C+B× C ( 1) A+B × C(? () 4. Which of the following is not a factor of x2-4? (1) x+2x-2 (3) x2-4 (4) x2. () 5. Which of the following cannot be a factor of A2-B2? (1) A2+B2 (2) A+B (3) A-B (4) A2-B2. () 6. Which of the following is wrong? (1) (-a+b) 2 = a2-2ab+B2 (2) (a-b) (a+b) = a2-B2 (3) (a-b) 2 = a2-2ab-B2 (4) (4+3) 2 = (1) 2x-3 (2) x+7 (3) x-7 (4) 2x+7. () 8. Which of the following is the common factor of 2x2+3x+ 1 and 4x2-4x-3? (1) x+1(2) x+2 (3) 2x-3 (4) 2x+1.() 9. Factorization (a+2) 2-3 (a+2) = (/kloc-) Which of the following is true? (1) A2-B2 = (a-b) 2 (2) A2-2ab+B2 = (a+b) (3) A2+2ab+B2 = (a+b) 2 (4) A2+B2 = (a+b) () 12. if 5x2-7x-6 = (5x+A) (x+B), then (1) a =-3 (2) b =-2 (3) ab = 6 (4) a+b = 5. () 1)a>03.x2+MX+n = (x+a) (x+b), if m 0, then (1) a > 0, b > 0 (2) a < 0, b < 15x-2 (2)15x+2 (3) 3x-1(4) 3x+1.()15. Which of the following is (x-4) (x-5? (1) x-2x+11(3) x-1(4) x+3. ()16. If 6x2-25x+4 = (1) ABCD = 25 (2) A+B+C+D = 24 (3) If A = 1, CD = 6 (4) If A = 1, D =- 1. () 17.4a2- 1 is equal to the following formula? ( 1)(4a- 1)2(2)(2a- 1)2(3)(4a+ 1)(4a- 1)(4)(2a+ 1)(2a- 1)。 () 18.x2+y2 equals (1) (x+y) 2 (2) (x+y) 2+2xy (3) (x-y) 2+2xy (4) (x-y) 2-2xy. () 19. You can use two squares with side length of xcm, nine rectangles with length and width of x, 1cm and four squares with side length of 1cm to spell out a square with length of (x+4) cm and width of (1) (2x+/kl. () 20. Which of the following is the factor of 2x2+3x+ 1 and 4x2-4x-3? (1) 2x-1(2) 2x+1(3) 2x-3 (4) x+1.() 21.Which of the following formulas is not a factor of 9X2-25? (1) 3x+5 (2) 3x-5 (3) 9x+5 (4) 9x2-25. () 22. Factorization x2-3x+2 = (x+a) (a+b) Then (1) a+. () 23. Which of the following quadratic factors is X- 1? (1) x2+5x+6 (2) x2-5x-6 (3) x2+5x-6 (4) x2-5x+6. () 24. (-x+y) 2 equals (1)-(x-y). () 25. If x+y =-5 and x-y = 15, then x2-y2 = (1)-5 (2)-1(3)-15 (4)/kloc. () 26.x2+px+q = (x+a) (x+b), if a < 0 and b < 0, then (1) p > 0 (2) q < 0 (3) pq > 0 (4) q > 0. () 27. If (x-5) 2-(x-5)- 12 can be decomposed into (x+a) (x+b), then a+b is equal to (1)-1(2). () 28.ax-CX-by+cy+bx-ay can be divided into the following types? (1) (x-y) (a-b-c) (2) (x+y) (a+b-c) (3) (x-y) (a-b+c) (4) (x-y) (a+b-c) .. (1) x2+2ax+x = x (x+2a) (2) 2x2-8 = x2-4 = (x-2) (x+2) (3) 36x2-84x+49 = (7-6x) 2 (4) x2-. If 2x3+3x2+MX+ 1 is a multiple of X+ 1, then m = 2. Factorization 3a3b2c-6a2bc2+9ab2c3 = 3. Factorization xy+6-2x-3y = 4. Factorization x2 (x-y)+y2 (y-x) = 5. Factorization 2x2-(a-2b) x-ab = 6. Try to decompose x3+3x2-4 = 8. Factorization AB (x2-y2)+XY (A2-B2) = 9. Factorization (x+y) (a-b-c)+(x-y) (b+c-a) =10. Factorization A2. 2 = 12. Factorization (a+3) 2-6 (a+3) = 13. Factorization (x+1) 2 (x+2)-(x+1) (x+2). 15. Using the square difference formula, find the standard decomposition formula 489 1 =. 16.2x+ 1 is a factor of 4x2+5x- 1 A: Yes. 17. If 6x2-7x+m is a multiple of 2x-3, the common factor of m = 18. X2+2x+ 1 and x2- 1 Yes. 19. If x+2 is a factor of x2+kx-8, find k =. 20. If 4x2+8x+3 is a multiple of 2x+ 1, please factorize 4x2+8x+3 =. 2 1.2x+ 1 is a factor of 4x2+8x+3. Please factorize 4x2+8x+3 =. 22. The factorial of (1) x+2 (2) x+4 (3) x+6 (4) x-6 (5) x2+2x3+24 is listed in X2-2x-24 (all pairs are given points) 23. Factorial decomposition of the following categories: (65438) (2)16x2-81=. (3) 9x2-30x+25 =. (4) x2-7x-30 = .24. If x2+ax-/kloc-0. 25. Please fill in the appropriate number: x2- 16x+= (x-) 2. 26. decompose the following categories: (1) xy-xz+x =; (2)6(x+ 1)-y(x+ 1)=(3)x2-5x-px+5p =; (4) 15 x2- 1 1x- 14 = 27。 Let 7x2- 19x-6 = (7x+a) (bx-3), where a and b are integers, then 2A+B = 29. Calculate the value of (1.99) 2-4× 1.99+4 as follows. 30. If x2+AX- 12 can be decomposed into (x+6) (x+b) and both a and b are integers, then a+b =. 3 1. It is known that 9X2-MX+25 = (3x-n) 2 and n is a positive integer, then m+n =. 32. If 2x3+11x2+18x+9 = (x+1) (ax+3) (x+b), then A-b =. 33.2992-3992 = 34. Fill in the appropriate numbers to make it completely flat 4x2-20x+. 35. Factorization x2-25 =. 36. Factorization x2-20x+ 100 =. 37. Factorization x2+4x+3 =. 38. Factorization 4x2- 12x+5 =. 39. Break down the following categories: (1) 3ax2-6ax =. (2) x (x+2)-x =. (3) x2-4x-ax+4a =. (4) 25x2-49 =. (5) 36x2-60x+25 =. (6) 4x2+12x+9 =. (. 4 1. Factorization 2ax2-3x+2ax-3 =. 42. Factorize 9X2-66x+ 12 1 =. 43. Factorization 8-2x2 =. 44. Factorization x2-x+ 14 =. 45. Factorization 9X2-30x+25 =. 46. Factorization -20x2+9x+20 =. 47. Factorization 12x2-29x+ 15 =. 48. Factorization is 36x2+39x+9 =. 49. Factorization 2 1x2-3 1x-22 =. 50. Factorization 9x4-35x2-4 =. 5 1. Factorization (2x+1) (x+1)+(2x+1) (x-3) =. 52. Factorization 2ax2-3x+2ax-3 =. 53. Factorize X (y+2)-X-Y- 1 =. 54. Factorization (x2-3x)+(x-3) 2 =. 55. Factorize 9X2-66x+ 12 1 =. 56. Factorization 8-2x2 =. 57. Factorize x4- 1 =. 58. Factorization x2+4x-xy-2y+4 =. 59. Factorization 4x2- 12x+5 =. 60. Factorization 2 1x2-3 1x-22 =. 6 1. Factorization 4x2+4xy+y2-4x-2y-3 =. 62. Factorization 9X5-35x3-4x =. 63. Break down the following categories: (1) 3x2-6x =. (2) 49x2-25 =. (3) 6x2-13x+5 =. (4) x2+2-3x =. (5)12x2-23x-24 =. (6) (x+6) (x-6) 65. If x2+MX- 15 can be decomposed into (x+n) (x-3) and both m and n are integers, then m = n =. 66. Find the sum, difference, product or quotient of the following. ( 1)(65 12 )2-(34 12 )2= 。 (2)(79 13 )2+2×79 13 ×23 +49 = 。 (3) 1998×0.48-798×0.48-798×0.52+ 1998×0.52= 。