( 1)tan(π/4n)>π/4n & gt; 1/4n
The original sequence diverges because ∑( 1/4n) diverges.
(2)n/(n^3+2)= 1/(n^2+2/n)<; 1/n^2
Because ∑ (1/n 2) converges, the original series converges.
(3) 1/[(2n- 1)* 2n]& lt; 1/(2n- 1)^2<; = 1/n^2
Because ∑ (1/n 2) converges, the original series converges.
(4)(cosn)^2/n√n<; = 1/n^(3/2)
Because ∑ [1/n (3/2)] converges, the original series converges.
(5)lim(n->∞)[(n+ 1)/e^(n+ 1)]/(n/e^n)
= lim(n->; ∞)( 1+ 1/n)/e
= 1/e
& lt 1
So the original series converges.
(6)lim(n->∞)[(n+3)/2^(n+ 1)]/[(n+2)/2^n]
= lim(n->; ∞)[(n+3)/2(n+2)]
= lim(n->; ∞)[( 1+3/n)/2( 1+2/n)]
= 1/2
& lt 1
So the original series converges.
(7)lim(n->∞)[5^(n+ 1)/(n+ 1)! ]/(5^n/n! )
= lim(n->; ∞)5/(n+ 1)
=0
So the original series converges.
(8)lim(n->∞)[(3^n*n! )/(n^n)]^( 1/n)
= 3 * lim(n-& gt; ∞)(n! /n^n)^( 1/n)
= 3 * lim(n-& gt; ∞)[( 1/n)*(2/n)*...*(n/n)]^( 1/n)
= 3 * lim(n-& gt; ∞)e^ln{[( 1/n)*(2/n)*...*(n/n)]^( 1/n)}
= 3 * lim(n-& gt; ∞)e^{( 1/n)*[ln( 1/n)+ln(2/n)+...+ln(n/n)]
=3*e^[∫(0, 1)lnxdx]
=3*e^[(xlnx-x)|(0, 1)]
=3*e^(- 1)
& gt 1
So the original series diverged.