The answer to the third question is 9900.
S99= 1*2+2*3+3*4+4*5+。 . . +99* 100
S98= 1*2+2*3+3*4+4*5+.。 . 98*99
Then s99-s98 = 99 * (100-98) = 99 * 2.
S98-S97=98*(99-97)=98*2
S97-S96=97*(98-96)=97*2
. . .
S2-S 1=2*(3- 1)=2*2
The left and right sides of the above formula are added separately.
S99-S 1=2*(2+3+4+5。 . . . +98+99)
S99=2*( 1+2+3+4+5+.。 . . 98+99)= 990 Respondents: Enthusiastic users | 201-7-912: 21.
2. Try to find the value of 1+2+3+4++100 = (1+100)+(2+99)+...+(50+5/kloc-0)
***50 is 5050.
3. Order S99 =1x2+2x3+3x4+4x5+...+99x100.
S98= 1x2+2x3+3x4+4x5+......98*99
Then s99-s98 = 99 * (100-98) = 99 * 2.
S98-S97=98*(99-97)=98*2
S97-S96=97*(98-96)=97*2
......
S2-S 1=2*(3- 1)=2*2
The left and right sides of the above formula are added separately.
S99-S 1=2*(2+3+4+5......+98+99)
S99 = 2 * (1+2+3+4+5+... 98+99) = 9900 Respondents: 123asd456wer | Level 1 | 201-7-65446.