π/4 & lt; x & ltπ/2
= = & gtcosx-sinx & gt; 0
= = & gtcosx-sin=√6/3
2. Sina ≤√3/2
= = & gt0≤A≤π/3,2π/3≤A≤π
cosA≥√3/2
= = & gt0≤A≤π/6
= = & gt0≤A≤π/6
3. Sina+COSA+3 > 0 is a constant.
(tanA-3)(sinA+cosA+3)=0
= => Tana -3=0
= = & gttanA=3
= = & gt3/2(sinA)^2+ 1/4(cosA)^2
=[3/2(sina)^2+ 1/4(cosa)^2]/[(sina)^2+(cosa)^2]
=[3/2(tana)^2+ 1/4]/[(tana)^2+ 1]
= 1 1/8
4.[sina+cosa]^2= 1/25= 1+2sinacosa
= = & gtsinAcosA=- 12/25
= = & gt(sinAcosA)^2= 144/625
[a+b]^3=a^3+b^3+3a^2b+3ab^2
= = & gt 1={(sina)^2+(cosa)^2}^3=(sina)^6+(cosa)^6+3(sina)^4(cosa)^2+3(sina)^2(cosa)^4
=(sina)^6+(cosa)^6+3*(sina)^2* 144/625+3*(cosa)^2* 144/625
=(sinA)^6+(cosA)^6+432/625
= = & gt(sinA)^6+(cosA)^6= 193/625
5.0<A< pi?
==.& gt0 & ltA & ltπ/2
= = & gt0 & ltsin(A/2),cos(A/2)& lt; 1
= = & gtsin(A/2)+cos(A/2)>0
√[ 2 sin(A/2)* cos(A/2)]+√[ 1+2 sin(A/2)* cos(A/2)]
=√(2sina)+√[sin(a/2)+cos(a/2)]^2
=√(2sinA)+sin(A/2)+cos(A/2)
6 .π/2 & lt; A< pi?
= = & gt- 1 & lt; cosA & lt0,0 & lt; Sina & lt 1
= = & gtsin(cosA)& lt; 0, cos (Sina)>0
= =>p is in the second quadrant