Then g' (x) = 2lnx/x.
According to Lagrange's mean value theorem,
ξ∈(a, b) exists, so
g(b)-g(b)=g'(ξ)(b-a)
g''(x)=2( 1-lnx)/x?
When x > e, g'' (x) < 0.
∴(e,e? ), g'(x) monotonically decreases,
∴g'(ξ)>g'(e? )=4/e?
∴ln? b-ln? a>4/e? (b-a)