∠ABD=∠ABC+∠DBC=∠BAC+45
=∠ 1+∠BAD+45;
∠ADB=∠BDC-∠ 1
=45 -∠ 1;
∠ABD+∠ADB+∠BAD = 180; So we can get: 90+2 ∠ bad = 180.
So: bad = 45.
(2)
① CE divides AD vertically, so AE equals DE, and AED is an isosceles right triangle starting from (1).
② According to ①, let DE /DC = AE/BC = DA/DB = K and let DC = BC = 1.
Then db = √ 2, de = AE = k, da = (√ 2) k, df = Fe = (√ 2) k/2.
Calculate cf = √ (1-k? /2), so ce = cf+Fe = √ (1-k? /2)+(√2)k/2
Similarly be = √ (2-k? )。 According to the above, it can be proved that (√ 2) Ce = DE+BE.