Current location - Training Enrollment Network - Mathematics courses - List of Trigonometric Functions in Senior One Mathematics
List of Trigonometric Functions in Senior One Mathematics
Basic relations of trigonometric functions with the same angle

Reciprocal relationship:

Relationship between businesses:

Square relation:

tanα

cotα= 1

sinα

cscα= 1

Coase α

secα= 1

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

commit a crime

2

α+cos

2

α= 1

1+ Tan

2

α = seconds

2

α

1+cot

2

α=csc

2

α

Inductive formula

Sine (-α) =-Sine α

cos(-α)=cosα

tan(-α)=-tanα

Kurt (-α) =-Kurt α

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

Sine (π-α) = Sine α

cos(π-α)=-cosα

tan(π-α)=-tanα

Kurt (π-α) =-Kurt α

Sine (π+α) =-Sine α

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

Sine (2π-α)=- Sine α

cos(2π-α)=cosα

tan(2π-α)=-tanα

Kurt (2π-α)=- Kurt α

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(where k∈Z)

Formulas of trigonometric functions of sum and difference of two angles.

General formula of trigonometric function

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=———

1-tanα

tanβ

tanα-tanβ

tan(α-β)=———

1+tanα

tanβ

2 tons (α/2)

sinα=————

1+ Tan

2

(α/2)

1- sepia

2

(α/2)

cosα=————

1+ Tan

2

(α/2)

2 tons (α/2)

tanα=————

1- sepia

2

(α/2)