Reciprocal relationship:
Relationship between businesses:
Square relation:
tanα
cotα= 1
sinα
cscα= 1
Coase α
secα= 1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
commit a crime
2
α+cos
2
α= 1
1+ Tan
2
α = seconds
2
α
1+cot
2
α=csc
2
α
Inductive formula
Sine (-α) =-Sine α
cos(-α)=cosα
tan(-α)=-tanα
Kurt (-α) =-Kurt α
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
Sine (π-α) = Sine α
cos(π-α)=-cosα
tan(π-α)=-tanα
Kurt (π-α) =-Kurt α
Sine (π+α) =-Sine α
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
Sine (2π-α)=- Sine α
cos(2π-α)=cosα
tan(2π-α)=-tanα
Kurt (2π-α)=- Kurt α
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(where k∈Z)
Formulas of trigonometric functions of sum and difference of two angles.
General formula of trigonometric function
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=———
1-tanα
tanβ
tanα-tanβ
tan(α-β)=———
1+tanα
tanβ
2 tons (α/2)
sinα=————
1+ Tan
2
(α/2)
1- sepia
2
(α/2)
cosα=————
1+ Tan
2
(α/2)
2 tons (α/2)
tanα=————
1- sepia
2
(α/2)