Where C(n, k) represents the number of combinations of k elements among n elements.
Reusing the above properties, we get k 2 * c (n, k) = NKC (n- 1, k- 1).
=n[(k- 1)C(n- 1,k- 1)+C(n- 1,k- 1)]
=n[(n- 1)C(n-2,k-2)+C(n- 1,k- 1)],
∑& lt; k=0,n & gtC(n,k)=2^n,
∴∑<; k= 1,n- 1 & gt; c(n- 1,k- 1)=2^(n- 1),
Similarly, ∑ < k=2, n-2 >: C(n-2,k-2)=2^(n-2),
∴∑<; k=0,n & gtk^2*c(n,k)=n[(n- 1)*2^(n-2)+2^(n- 1)]
=n(n+ 1)*2^(n-2).
Is it okay?