Current location - Training Enrollment Network - Mathematics courses - High school mathematics permutation and combination
High school mathematics permutation and combination
kC(n,k)=k*n! /[k! (n-k)! ]=n*(n- 1)! /[(k- 1)! (n-k)! ]=nC(n- 1,k- 1),

Where C(n, k) represents the number of combinations of k elements among n elements.

Reusing the above properties, we get k 2 * c (n, k) = NKC (n- 1, k- 1).

=n[(k- 1)C(n- 1,k- 1)+C(n- 1,k- 1)]

=n[(n- 1)C(n-2,k-2)+C(n- 1,k- 1)],

∑& lt; k=0,n & gtC(n,k)=2^n,

∴∑<; k= 1,n- 1 & gt; c(n- 1,k- 1)=2^(n- 1),

Similarly, ∑ < k=2, n-2 >: C(n-2,k-2)=2^(n-2),

∴∑<; k=0,n & gtk^2*c(n,k)=n[(n- 1)*2^(n-2)+2^(n- 1)]

=n(n+ 1)*2^(n-2).

Is it okay?