∫ quadrilateral ABDE is a square,
∴∠AOB=90,OA=OB,
∴∠AOM+∠BOF=90,
∠ amo = 90。
∴∠AOM+∠OAM=90,
∴∠BOF=∠OAM,
At △AOM and △BOF,
AMO=∠OFB=90 degrees
∠OAM=∠BOF
OA=OB,
∴△AOM≌△BOF(AAS),
∴AM=OF,OM=FB,
∠ ACB =∠ AMF =∠ CFM = 90,
∴ Quadrilateral ACFM is rectangular,
∴AM=CF,AC=MF=5,
∴OF=CF,
∴△OCF is an isosceles right triangle,
∫CF = OF = BC-FB = BC-OM = BC-(OF-AC)= 9-OF+5 = 14-OF
Then 2CF= 14, CF=OF=7.
Pythagorean Theorem: OC? =2OF?
OC=√2? OF=7√2