The addition of vectors satisfies parallelogram rule and triangle rule.
AB+BC=AC。
a+b=(x+x ',y+y ')。
a+0=0+a=a。
Algorithm of vector addition;
Exchange law: a+b = b+a;
Law of association: (a+b)+c=a+(b+c).
2. Vector subtraction
If A and B are mutually opposite vectors, then the reciprocal of A =-B, B =-A and A+B = 0.0 is 0.
AB-AC=CB。 That is, "* * * the starting point is the same, and the direction is reduced"
A=(x, y) b=(x', y') Then a-b=(x-x', y-y').
4. Multiply the number by the vector
The product of real number λ and vector A is a vector, denoted as λ a, λ a = ∣ λ ∣? ∣a∣.
When λ > 0, λa and A are in the same direction;
When λ < 0, λa and A are in opposite directions;
When λ=0, λa=0, and the direction is arbitrary.
When a=0, there is λa=0 for any real number λ.
Note: By definition, if λa=0, then λ=0 or A = 0.
Real number λ is called the coefficient of vector A, and the geometric meaning of multiplier vector λa is to extend or compress the directed line segment representing vector A. 。
When ∣ λ ∣ > 1, the directed line segment representing vector A extends to ∣λ ∣ times in the original direction (λ > 0) or in the reverse direction (λ < 0);
When ∣ λ ∣ < 1, the directed line segment representing vector A is shortened to ∣ λ ∣ times in the original direction (λ > 0) or in the reverse direction (λ < 0).
The multiplication of numbers and vectors satisfies the following algorithm.
Law of association: (λa)? b=λ(a? b)=(a? λb)。
The distribution law of vector logarithm (first distribution law): (λ+μ)a=λa+μa 。
The distribution law of number pair vector (second distribution law): λ(a+b)=λa+λb 。
The elimination method of number multiplication vector: ① If the real number λ≠0 and λa=λb, then a=b.② If a≠0 and λa=μa, then λ = μ.
3. Quantity product of vectors
Definition: Given two non-zero vectors A and B, let OA = A and OB = B, then the angle AOB is called the included angle between vector A and vector B, denoted as < A, B > and specified as 0 ≤
Definition: the product of two vectors (inner product, dot product) is a quantity, which is recorded as a? B. If A and B are not connected, then A? b=|a|? |b|? cos〈a,b〉; If a, b***, then a? b=+-∣a∣∣b∣.
Coordinate representation of vector product: a? b=x? x'+y? y。
Vector product algorithm
Answer? b=b? A (commutative law);
(λa)? b=λ(a? B) (On the Law of Number Multiplication);
(a+b)? c=a? c+b? C (distribution method);
Properties of scalar product of vectors
Answer? A = the square of a |.
a⊥b÷a? b=0。
|a? b|≤|a|? |b|。
The main difference between vector product and real number operation
1, the product of vectors does not satisfy the associative law, that is: (a? b)? c≠a? (b? c); For example: (a? b)^2≠a^2? b^2.
2. The product of a vector does not satisfy the law of elimination, that is, it is determined by A? b=a? C (a≠0) and b=c cannot be deduced.
3、a? b |≦| a |? |b|
4. From |a|=|b|, it cannot be inferred that a=b or a =-b. 。
4. Cross product of vectors.
Definition: The cross product (outer product and cross product) of two vectors A and B is a vector, which is denoted as a×b. If A and B are not * * * lines, the modulus of a×b is: ∣a×b∣=|a|? |b|? sin〈a,b〉; The direction of a×b is perpendicular to A and B, and A, B and a×b form a right-handed system in this order. If a and b are * * * lines, a×b=0.
Cross product property of vector;
∣a×b∣ is the area of a parallelogram with sides A and B. 。
a×a=0。
a‖b‖= a×b = 0。
Cross product algorithm of vectors
a×b =-b×a;
(λa)×b =λ(a×b)= a×(λb);
(a+b)×c=a×c+b×c。
Note: vector AB/ vector CD is meaningless without vector division.
Triangular inequality of vectors
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① If and only if A and B are reversed, take the equal sign on the left;
② If and only if A and B are in the same direction, the right side is an equal sign.
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.
① If and only if A and B are in the same direction, take the equal sign on the left;
② If and only if A and B are reversed, the right side is equal.
definite proportion
The fractional formula (vector P 1P=λ? Vector PP2)
Let P 1 and P2 be two points on a straight line, and p is any point on L different from P 1 and P2. Then there is a real number λ, so the vector P 1P=λ? Vector PP2, λ is called the ratio of point p divided by directed line segment P 65438+P 2.
If p 1 (x 1, y 1), p2 (x2, y2), p (x, y), then there is
OP =(OP 1+λOP2)( 1+λ); (Fixed Fractional Vector Formula)
x=(x 1+λx2)/( 1+λ),
Y=(y 1+λy2)/( 1+λ)。 (Proportional point coordinate formula)
Let's call the above formula the fixed point formula of the directed line segment P 1P2.
Three-point * * line theorem
If OC=λOA +μOB, and λ+μ= 1, then the three points A, B and C are * * * lines.
Judgement formula of triangle center of gravity
In △ABC, if GA +GB +GC=O, then G is the center of gravity of △ABC.
Important conditions of vector * * * line
If b≠0, the important condition of ab is the existence of a unique real number λ, so that A = λ b. 。
The important condition of ab is xy'-x'y=0.
The zero vector 0 is parallel to any vector.
Necessary and Sufficient Conditions for Verticality of Vector
The necessary and sufficient condition of a⊥b is a? b=0。
The necessary and sufficient condition of a⊥b is xx'+yy'=0.
The zero vector 0 is perpendicular to any vector. , 2,
Sun Qifeng reports
Report me and laugh.
лл (_-)-(_-)-(_-)-(_-)-(_-)-(_-)-This requires your own summary. ,0,