(1) Find the value of a (2) Find the perimeter of the quadrilateral ABDC.
Solution: (1). Point P(m, 2) is on the image of inverse proportional function y= 12/x, so there is 2= 12/m, that is, m =12/= 6; P (6 6,2) at a time.
The function y=kx-7, so there is 2=6k-7, that is, k = 9/6 = 3/2; So the equation of linear function is: y = (3/2) x-7;
According to the conditions, the coordinates of four points A, B, C and D are: A(2, -4), B(2+a, (3/2)(2+a)-7)=(2+a, 3a/2-4);
C(2,6),D(2+a, 12/(2+a)); Equation from ∣AB∣=∣CD∣:
[(2+a)-2)? +[(3a/2-4-(-4)]? =[(2+a)-2]? +[ 12/(2+a)-6]?
Simplify to get an A? +9a? /4=a? +36a? /(2+a)?
(2+a)? = 16, 2+A = 4, so a=2 or a=-6, it is discarded.
Namely A(2,-4); B(4,- 1); C(2,6); D(4,3).
(2)∣AB∣=√[(4-2)? +(- 1+4)? ]=√ 13; ∣CD∣=√[(4-2)? +(3-6)? ]=√ 13; ∣ac∣=4+6= 10;
∣bd∣= 1+3=4; Therefore, the perimeter of quadrilateral ABDC = 14+2√ 13.