(2)∠AEC= 135?
(3) Because ∠B+∠D=90? ,∠A+∠C= 180? ,∠AED=∠CEB=45?
So ∠A+∠D= 135? ,∠B+∠C= 135?
So, ∠A= 135? -∠D,∠B=90? -∠D,∠C=45? +∠D
According to Zheng Xuan's theorem, AE/sin∠D=AD/sin45? =6 and BE/sin(45? +∠D)=BC/sin45? =√2
AB=AE+BE=6sin∠D+√2sin(∠D+sin45? )=7sin∠D+cos∠D
According to the orthomorphism theorem, DE/sin( 135-∠D)=AD/sin45? =6, and CE/(sin90? -∠D)=BC/sin45? =√2
CD=DE+CE=6sin( 135? -∠D)+√2cos∠D=4√2,
Therefore, (3sin∠D)/4+cos∠D= 1, press sin? ∠D+cos? ∠D= 1
Solve sin∠D=24/25 and cos∠D=7/25.
Because AB=7sin∠D+cos∠D=7.