∴M and n are the midpoint of α and α respectively,
∴AN=ON,OM=CM,
∫A(0,2),
∴OA=2,
Similarly, the quadrilateral BMON is rectangular,
∴ON=BM= 1,
∫∠ODC = 60,
∴∠OBC= 120,
And ∵BO=CO, BM⊥OC,
∴∠OBM=60,
In Rt△OBM, BM= 1,
So OM=BM? tan60 =3,
Then oc = 2om = 23.
So choose d